




INTRODUCTION TO
TYPE-2 FUZZY LOGIC
CONTROL



IEEE Press
445 Hoes Lane

Piscataway, NJ 08854

IEEE Press Editorial Board
Tariq Samad, Editor in Chief

George W. Arnold Mary Lanzerotti Linda Shafer

Dmitry Goldgof Pui-In Mak MengChu Zhou

Ekram Hossain Ray Perez George Zobrist

Kenneth Moore, Director of IEEE Book and Information Services (BIS)

Technical Reviewers

Honghai Liu, Professor, The University of Portsmouth, UK 

Faa-Jeng Lin, Chair Professor, Dept. of Electrical Engineering, National Central University, 
Chung Li 320, Taiwan



INTRODUCTION TO
TYPE-2 FUZZY LOGIC
CONTROL
THEORY AND APPLICATIONS

Jerry M. Mendel
Hani Hagras
Woei-Wan Tan
William W. Melek
Hao Ying



Copyright © 2014 by The Institute of Electrical and Electronics Engineers, Inc.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey. All rights reserved

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form

or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as

permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior

written permission of the Publisher, or authorization through payment of the appropriate per-copy fee

to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400,

fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission

should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street,

Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at

http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts

in preparing this book, they make no representations or warranties with respect to the accuracy or

completeness of the contents of this book and specifically disclaim any implied warranties of

merchantability or fitness for a particular purpose. No warranty may be created or extended by sales

representatives or written sales materials. The advice and strategies contained herein may not be

suitable for your situation. You should consult with a professional where appropriate. Neither the

publisher nor author shall be liable for any loss of profit or any other commercial damages, including

but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our

Customer Care Department within the United States at (800) 762-2974, outside the United States at

(317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print

may not be available in electronic formats. For more information about Wiley products, visit our web

site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Mendel, Jerry M., 1938–

Introduction to type-2 fuzzy logic control : theory and applications / Jerry M. Mendel,

Hani Hagras, Woei-Wan Tan, William W. Melek, Hao Ying.

pages cm

Includes bibliographical references and index.

ISBN 978-1-118-27839-0 (cloth)

1. Automatic control. 2. Fuzzy systems. I. Hagras, Hani. II. Tan, Woei-Wan. III. Melek,

William W. IV. Ying, Hao, 1958- V. Title.

TJ217.5.M46 2014

629.8′95633–dc23

2014000084

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com


To
the memory of

Ebrahim Mamdani (1943–2010)
Founder of Fuzzy Logic Control





CONTENTS

Preface xiii

Contributors xvii

1 Introduction 1

1.1 Early History of Fuzzy Control 1

1.2 What Is a Type-1 Fuzzy Set? 2

1.3 What Is a Type-1 Fuzzy Logic Controller? 3

1.4 What Is a Type-2 Fuzzy Set? 7

1.5 What Is a Type-2 Fuzzy Logic Controller? 9

1.6 Distinguishing an FLC from Other Nonlinear Controllers 10

1.7 T2 FLCs versus T1 FLCs 11

1.8 Real-World Applications of IT2 Mamdani FLCs 14

1.8.1 Applications to Industrial Control 14

1.8.2 Airplane Altitude Control 23

1.8.3 Control of Mobile Robots 24

1.8.4 Control of Ambient Intelligent Environments 27

1.9 Book Rationale 29

1.10 Software and How it Can Be Accessed 30

1.11 Coverage of the Other Chapters 30

2 Introduction to Type-2 Fuzzy Sets 32

2.1 Introduction 32

2.2 Brief Review of Type-1 Fuzzy Sets 32

2.2.1 Some Definitions 32

2.2.2 Set-Theoretic Operations 35

2.2.3 Alpha Cuts 36

2.2.4 Compositions of T1 FSs 39

2.2.5 Rules and Their MFs 40

2.3 Interval Type-2 Fuzzy Sets 42

2.3.1 Introduction 42

vii



viii CONTENTS

2.3.2 Definitions 43

2.3.3 Set-Theoretic Operations 51

2.3.4 Centroid of an IT2 FS 54

2.3.5 Properties of cl(k) and cr(k) 58

2.3.6 KM Algorithms as Well as Some Others 59

2.4 General Type-2 Fuzzy Sets 68

2.4.1 𝛼-Plane/zSlice Representation 68

2.4.2 Set-Theoretic Operations 72

2.4.3 Centroid of a GT2 FS 73

2.5 Wrapup 77

2.6 Moving On 79

3 Interval Type-2 Fuzzy Logic Controllers 80

3.1 Introduction 80

3.2 Type-1 Fuzzy Logic Controllers 80

3.2.1 Introduction 80

3.2.2 T1 Mamdani FLCs 81

3.2.3 T1 TSK FLCs 85

3.2.4 Design of T1 FLCs 86

3.3 Interval Type-2 Fuzzy Logic Controllers 86

3.3.1 Introduction 86

3.3.2 IT2 Mamdani FLCs 87

3.3.3 IT2 TSK FLCs 103

3.3.4 Design of T2 FLCs 105

3.4 Wu–Mendel Uncertainty Bounds 105

3.5 Control Analyses of IT2 FLCs 111

3.6 Determining the FOU Parameters of IT2 FLCs 114

3.6.1 Blurring T1 MFs 114

3.6.2 Optimizing FOU Parameters 114

3.7 Moving On 122

Appendix 3A. Proof of Theorem 3.4 123

3A.1 Inner-Bound Set [ul(𝐱), ur(𝐱)] 123

3A.2 Outer-Bound Set [ul(𝐱), ur(𝐱)] 124

4 Analytical Structure of Various Interval Type-2 Fuzzy PI
and PD Controllers 131

4.1 Introduction 131

4.2 PID, PI, and PD Controllers and Their Relationships 134



CONTENTS ix

4.2.1 Two Forms of PID Controller—Position Form and
Incremental Form 134

4.2.2 PI and PD Controllers and Their Relationship 135

4.3 Components of the Interval T2 Fuzzy PI and PD
Controllers 136

4.4 Mamdani Fuzzy PI and PD Controllers—Configuration 1 140

4.4.1 Fuzzy PI Controller Configuration 140

4.4.2 Method for Deriving the Analytical Structure 144

4.5 Mamdani Fuzzy PI and PD Controllers—Configuration 2 154

4.6 Mamdani Fuzzy PI and PD Controllers—Configuration 3 162

4.6.1 Fuzzy PI Controller Configuration 162

4.6.2 Method for Deriving the Analytical Structure 165

4.7 Mamdani Fuzzy PI and PD Controllers—Configuration 4 169

4.7.1 Fuzzy PI Controller Configuration 169

4.7.2 Method for Deriving the Analytical Structure 171

4.8 TSK Fuzzy PI and PD Controllers—Configuration 5 181

4.8.1 Fuzzy PI Controller Configuration 181

4.8.2 Deriving the Analytical Structure 184

4.9 Analyzing the Derived Analytical Structures 185

4.9.1 Structural Connection with the Corresponding T1
Fuzzy PI Controller 186

4.9.2 Characteristics of the Variable Gains of the T2
Fuzzy PI Controller 190

4.10 Design Guidelines for the T2 Fuzzy PI and PD Controllers 194

4.10.1 Determination of 𝜃1 and 𝜃2 Values 196

4.10.2 Determination of the Remaining Nine Parameter
Values 197

4.11 Summary 198

Appendix 4A 200

5 Analysis of Simplified Interval Type-2 Fuzzy PI
and PD Controllers 205

5.1 Introduction 205

5.2 Simplified Type-2 FLCs: Design, Computation, and
Performance 206

5.2.1 Structure of a Simplified IT2 FLC 207

5.2.2 Output Computation 208

5.2.3 Computational Cost 209

5.2.4 Genetic Tuning of FLC 210



x CONTENTS

5.2.5 Performance 211

5.2.6 Discussions 216

5.3 Analytical Structure of Interval T2 Fuzzy PD and PI
Controller 221

5.3.1 Configuration of Interval T2 Fuzzy PD and PI
Controller 221

5.3.2 Analysis of the Karnik–Mendel Type-Reduced
IT2 Fuzzy PD Controller 227

5.3.3 Analysis of the IT2 Fuzzy PD Controller 231

5.4 Conclusions 248

6 On the Design of IT2 TSK FLCs 251

6.1 Introduction 251

6.2 Preliminaries 251

6.2.1 Discrete T1 TSK FLC: Rules and Firing Level 252

6.2.2 Continuous T1 TSK FLC: Rules and Firing Level 252

6.2.3 T1 TSK FLC Output 253

6.2.4 Discrete IT2 TSK FLC: Rules and Firing Interval 253

6.2.5 Continuous IT2 TSK FLC: Rules and Firing Interval 253

6.2.6 IT2 TSK FLC Output 254

6.3 Novel Inference Engine for Control Design 254

6.4 Stability of IT2 TSK FLCs 255

6.4.1 Stability of Discrete IT2 TSK FLC 255

6.4.2 Stability of Continuous IT2 TSK FLC 258

6.4.3 Examples 259

6.5 Design of Adaptive IT2 TSK FLC 264

6.5.1 Rule Bases 264

6.5.2 Membership Functions 265

6.5.3 Control Structure 265

6.5.4 Control Design 266

6.5.5 Control Performance 267

6.6 Adaptive Control Design with Application to Robot
Manipulators 268

6.6.1 Tracking Control 269

6.6.2 Control Structure 270

6.6.3 Application to Modular and Reconfigurable Robot
Manipulators (MRR) 274



CONTENTS xi

6.7 Robust Control Design 277

6.7.1 System Description 277

6.7.2 Disturbance Rejection Problem and Solution 280

6.7.3 Robust Control Example 284

6.8 Summary 285

Appendix 285

7 Looking into the Future 290

7.1 Introduction 290

7.2 William Melek and Hao Ying Look into the Future 290

7.3 Hani Hagras Looks into the Future 293

7.3.1 Nonsingleton IT2 FL Control 293

7.3.2 zSlices-Based Singleton General T2 FL Control 299

7.4 Woei Wan Tan Looks into the Future 306

7.5 Jerry Mendel Looks into The Future 307

7.5.1 IT2 FLC 307

7.5.2 GT2 FLC 309

Appendix A T2 FLC Software: From Type-1 to zSlices-Based
General Type-2 FLCs 315

A.1 Introduction 315

A.2 FLC for Right-Edge Following 315

A.3 Type-1 FLC Software 316

A.3.1 Define and Set Up T1 FLC Inputs 316

A.3.2 Define T1 FSs That Quantify Each Variable 316

A.3.3 Define Logical Antecedents and Consequents
for the FL Rules 318

A.3.4 Define Rule Base of T1 FLC 318

A.4 Interval T2 FLC Software 321

A.4.1 Define and Set Up FLC Inputs 323

A.4.2 Define IT2 FSs That Quantify Each Variable 323

A.4.3 Define Logical Antecedents and Consequents
for the FL Rules 323

A.4.4 Define Rule Base of the IT2 FLC 323

A.5 zSlices-Based General Type-2 FLC Software 327

A.5.1 Define and Set Up FLC Inputs 327



xii CONTENTS

A.5.2 Define zSlices-Based GT2 FSs That Quantify
Each Variable 327

A.5.3 Define Logical Antecedents and Consequents
for the FL Rules 335

A.5.4 Define Rule Base of the GT2 FLC 335

References 338

Index 347



PREFACE

When Lotfi Zadeh invented fuzzy sets in 1965, he never dreamt that the field in

which they would be most widely used would arguably be the one that became the

most hostile to the concept of fuzziness, namely control. Perhaps this was because

the word “fuzzy” in Western civilization does not have a positive connotation and

suggests an abandonment of mathematical rigor, one of the cornerstones of con-

trol. Perhaps it was because some famous mathematical probabilists (incorrectly)

claimed that there was no difference between a fuzzy set and subjective proba-

bility. Perhaps it was because for almost a decade, until the 1974 seminal paper

by Prof. Ebrahim Mamdani, who founded the field of fuzzy logic control and to

whose memory our book is dedicated, there were no substantial real-world appli-

cations for fuzzy sets. Or, perhaps, it was because after the founding of this field

many exaggerated claims were made by the fuzzy logic control community that

flew in the face of mathematical rigor and did not pay attention to the same metrics

that were and still are the cornerstones for control and cannot be ignored.

Now, 40 years after Mamdani’s seminal paper, fuzzy logic control using regular

(i.e., type-1) fuzzy sets and logic has been extensively studied, applied to practical

problems, and is very widely used in many real-world applications. It can and has

been studied with the same level of mathematical rigor that control theorists are

accustomed to, and is now considered a matured field; however, it still has some

shortcomings. Its major shortcoming (in the opinions of the authors of this book)

goes back to one of the earliest criticisms made about a type-1 fuzzy set, namely the

unfuzziness of its membership function, that is, the word “fuzzy” has the connota-

tion of being uncertain. But how can this connotation be captured by a membership

function that is completely certain?

Importantly, in 1975 Zadeh introducedmore general kinds of fuzzy sets in which

their membership function grades are themselves fuzzy. The two most widely stud-

ied of these are interval-valued fuzzy sets and type-2 fuzzy sets. For the former, the

membership grade is a uniformly weighted interval of values, whereas for the lat-

ter the membership grade is a nonuniformly weighted interval of values. Obviously,

interval-valued fuzzy sets are a special case of type-2 fuzzy sets and are therefore

called by many (as we do in this book) interval type-2 fuzzy sets.
Why should using type-2 fuzzy sets be of interest to the fuzzy logic control com-

munity?This question is answered in great detail in this book, but two short answers

are: (1) they are more robust to system uncertainties and can provide better control

system performance than type-1 fuzzy sets; and (2) there is now more than a critical

xiii



xiv PREFACE

mass of papers that have been published that demonstrate these improvements for
many real-world applications.

Because of the lack of basic calculation methods for type-2 fuzzy sets in their
early days, type-2 fuzzy logic controllers (T2 FLCs) did not emerge until fairly
recently. Things have changed a lot during the past decade, so that type-2 fuzzy
logic control (which is still an emerging field) now has the attention of the fuzzy
systems community, and, as a result of this, the number of publications on it is
growing quickly.

Recall that the central themes of any control methodology, fuzzy or conven-
tional, are (1) to analyze various aspects of a control system and (2) to design a
control system to achieve given user specifications. This book focuses on both top-
ics for T2 FLCs and type-2 fuzzy logic control systems. The analysis includes (1)
the mathematical structure of some T2 FLCs, (2) stability of type-2 fuzzy logic
control systems, and (3) robustness of the type-2 fuzzy logic control systems.

This book, the first one entirely on T2 FLC, shows how to design type-2 fuzzy
logic control systems based on a variety of choices for the T2 FLC components and
also demonstrates how to apply type-2 fuzzy logic control theory to applications.
It has been written by five of the leading experts on type-2 fuzzy sets, systems, and
control, with the help of six contributors. It will be useful to any technical person
interested in learning type-2 fuzzy logic control theory and its applications, from
students to practicing engineers.

This is an introductory book that provides theoretical, practical, and application
coverage of type-2 fuzzy logic control, and uses a coherent structure and uniform
mathematical notations to link chapters, which are closely related, reflecting the
book’s central themes—analysis and design of type-2 fuzzy logic control systems.
It has been written with an educational focus rather than a pure research focus.
Each chapter includes worked examples, and most refer to their computer codes
(programs) accessible through the book’s common website, and outline how to use
them at some high level. It is a self-contained reference book suitable for engineers,
researchers, and college graduate students who want to gain deep insights about
type-2 fuzzy logic control.

The book beginswith an easy-to-read chaptermeant to whet the reader’s appetite
so that he or she will read on; it explains what the differences are between a type-1
fuzzy set and a type-2 fuzzy set, and a T2 FLC and a T1 FLC, and, it provides
many real-world applications in which T2 FLCs have shown marked improvements
in performance over T1 FLCs. Chapter 2 provides all of the background material
that is needed about type-2 fuzzy sets so that you can read the rest of the book;
its main emphasis is on interval type-2 fuzzy sets because at present they are the
most widely used type-2 fuzzy sets in type-2 fuzzy logic control. Chapter 3 is about
Mamdani and TSK interval T2 FLCs. Chapter 4 examines the analytical structure
of various interval type-2 fuzzy PI and PD controllers. Chapter 5 is about ways to
simplify interval type-2 fuzzy PI and PD controllers. Chapter 6 is about the rigorous
design of interval type-2 TSK fuzzy controllers. Chapter 7 provides each of the five
authors with an opportunity to look into the future of type-2 fuzzy logic control.
The book’s appendix describes Java-based software that will let the reader examine
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type-1, interval type-2, and even general type-2 FLCs. All references (which are
very extensive) have been integrated into one list that is at the end of the book.

The book’s software can be downloaded by means of the following procedure:
Software for Examples 4.1 and 4.6 and the examples in Chapter 6 can be accessed
at http://booksupport.wiley.com, and software for Appendix A, that supports T1,
IT2 and GT2 FLCs, is available at http://juzzy.wagnerweb.net.

In addition to the five authors, six of their (former) graduate students contributed
to this book, to whom the authors are greatly appreciative. Their names are listed in
the Contributors List. More specifically, Christian Wagner contributed to Chapters
2, 3 and 7, and prepared the entire Appendix; Xinyu Du and Haibo Zhou con-
tributed to Chapter 4; Maowen Nie and Dongrui Wu contributed to Chapter 5; and
Mohammad Biglarbegian contributed to Chapter 6.

The authors gratefully acknowledgematerial quoted from books or journals pub-
lished by Elsevier, IEEE, John Wiley & Sons, Mancy Publishing (www.maney.co.
uk/journals/irs and www.ingentaconnect.com/content/maney/ias) and Pearsons
Education, Inc. For a complete listing of quoted books or articles, please see the
References.

Jerry M. Mendel
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Hani Hagras
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CHAPTER 1

Introduction

1.1 EARLY HISTORY OF FUZZY CONTROL

Fuzzy control (also known as fuzzy logic control) is regarded as the most widely
used application of fuzzy logic and is credited with being a well-accepted method-
ology for designing controllers that are able to deliver satisfactory performance in
the face of uncertainty and imprecision (Lee, 1990; Sugeno, 1985; Feng, 2006).
In addition, fuzzy logic theory provides a method for less skilled personnel to
develop practical control algorithms in a user-friendly way that is close to human
thinking and perception, and to do this in a short amount of time. Fuzzy logic
controllers (FLCs) can sometimes outperform traditional control systems [like
proportional–integral–derivative (PID) controllers] and have often performed
either similarly or even better than human operators. This is partially because most
FLCs are nonlinear controllers that are capable of controlling real-world systems
(the vast majority of such systems are nonlinear) better than a linear controller
can, and with minimal to no knowledge about the mathematical model of the plant
or process being controlled.

Fuzzy logic controllers have been applied with great success to many real-world
applications. The first FLC was developed by Mamdani and Assilian (1975), in the
United Kingdom, for controlling a steam generator in a laboratory setting. In 1976,
Blue Circle Cement and SIRA in Denmark developed a cement kiln controller
(the first industrial application of fuzzy logic), which went into operation in 1982
(Holmblad and Ostergaard, 1982). In the 1980s, several important industrial
applications of fuzzy logic control were launched successfully in Japan, including
a water treatment system developed by Fuji Electric. In 1987, Hitachi put a
fuzzy logic based automatic train operation control system into the Sendai city’s
subway system (Yasunobu and Miyamoto, 1985). These and other applications
of FLCs motivated many Japanese engineers to investigate a wide range of
novel applications for fuzzy logic. This led to a “fuzzy boom” in Japan, a
result of close collaboration and technology transfer between universities and
industry.

According to Yen and Langari (1999), in 1988, a large-scale national research
initiative was established by the Japanese Ministry of International Trade and

Introduction to Type-2 Fuzzy Logic Control: Theory and Applications, First Edition.

Jerry M. Mendel, Hani Hagras, Woei-Wan Tan, William W. Melek, and Hao Ying.

© 2014 by The Institute of Electrical and Electronics Engineers, Inc. Published 2014 by John Wiley & Sons, Inc.
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2 INTRODUCTION

Industry (MITI). The initiative established by MITI was a consortium called the
Laboratory for International Fuzzy Engineering Research (LIFE). In late January
1990, Matsushita Electric Industrial (Panasonic) named their newly developed
fuzzy-controlled automatic washing machine the fuzzy washing machine and
launched a major commercial campaign of it as a fuzzy product. This campaign
turned out to be a successful marketing effort not only for the product but also for
fuzzy logic technology (Yen and Langari, 1999). Many other home electronics
companies followed Panasonic’s approach and introduced fuzzy vacuum cleaners,
fuzzy rice cookers, fuzzy refrigerators, fuzzy camcorders (for stabilizing the image
under hand jittering), fuzzy camera (for smart autofocus), and other applications.
As a result, consumers in Japan recognized the now en-vogue Japanese word
“fuzzy,” which won the gold prize for a new word in 1990 (Hirota, 1995).
Originating in Japan, the “fuzzy boom” triggered a broad and serious interest in
this technology in Korea, Europe, the United States, and elsewhere. For example,
Boeing, NASA, United Technologies, and other aerospace companies developed
FLCs for space and aviation applications (Munakata and Jani, 1994).

Today FLCs are used in countless real-world applications that touch the lives of
people all over the world, including white goods (e.g., washing machines, refrig-
erators, microwaves, rice cookers, televisions, etc.), digital video cameras, cars,
elevators (lifts), heavy industries (e.g., cement, petroleum, steel), and the like.

While this book focuses on type-2 fuzzy logic control, it will also provide back-
ground material about type-1 fuzzy logic control. Indeed, before we can explain
what type-2 fuzzy logic control is we must briefly explain what type-1 fuzzy sets,
type-1 fuzzy logic control, and type-2 fuzzy sets are. In this chapter we do this from
a high-level perspective without touching on the mathematical aspects in order to
give a feel for the nature of fuzzy sets and their applications. Later chapters in this
book provide rigorous treatments of mathematical underpinnings of the subjects
just mentioned.

1.2 WHAT IS A TYPE-1 FUZZY SET?

Suppose that a group of people is asked about the temperature values they associate
with the linguistic concepts Hot and Cold. If crisp sets are employed, as shown in
Fig. 1.1a, then a threshold must be chosen above which temperature values are
considered Hot and below which they are considered Cold. Reaching a consensus
about such a threshold is difficult, and even if an agreement can be reached—for
example, 18∘C— , is it reasonable to conclude that 17.99999∘C is Cold whereas
18.00001∘C is Hot?

On the other hand, Hot and Cold can be represented as type-1 fuzzy sets (T1
FSs) whose membership functions (MFs) are shown in Fig. 1.1b. Note that, prior
to the appearance of type-2 fuzzy sets, the phrase fuzzy set was used instead of the
phrase T1 fuzzy set. Even today, in many publications that focus only on T1 FSs,
such sets are called fuzzy sets. In this book we shall use the phrase type-1 fuzzy set.
Returning to Fig. 1.1b, observe that no sharp boundaries exist between the two sets
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0
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Figure 1.1 Representing Cold and Hot using (a) crisp sets, and (b) type-1 fuzzy sets.

and that each value on the horizontal axis may simultaneously belong to more than
one T1 FS but with different degrees of membership. For example, 26∘C, which is
in the crisp Hot set with a membership value of 1.0 (Fig. 1.1a), is now in that set to
degree 0.8, but is also in the Cold set to degree 0.2 (Fig. 1.1b).

Type-1 FSs provide a means for calculating intermediate values between the
crisp values associated with being absolutely true (1) or absolutely false (0). Those
values range between 0 and 1 (and can include them); thus, it can be said that a
fuzzy set allows the calculation of shades of gray between white and black (or true
and false). As will be seen in this book, the smooth transition that occurs between
T1 FSs gives a good decision response for a type-1 fuzzy logic control system in
the face of noise and other uncertainties.

1.3 WHAT IS A TYPE-1 FUZZY LOGIC CONTROLLER?

With the advent of type-2 fuzzy sets and type-2 fuzzy logic control, it has become
necessary to distinguish between type-2 fuzzy logic control and all earlier fuzzy
logic control that uses type-1 fuzzy sets (the distinctions between such fuzzy sets
are explained in Section 1.4). We refer to fuzzy logic control that uses type-1 fuzzy
sets as type-1 fuzzy logic control. When it does not matter whether the fuzzy sets
are type-1 or type-2, we just use fuzzy logic control or fuzzy control.

Fuzzy logic control aims to mimic the process followed by the human mind
when performing control actions. For example, when a person drives (controls) a
car, he/she will not think:

If the temperature is 10 degrees Celsius and the rainfall is 70.5 mm and the road is
40% slippery and the distance between my car and the car in front of me is 3 meters,
then I will depress the acceleration pedal only 10%.

Instead, it is much more likely that he/she thinks:

If it isCold and the rainfall isHigh and the road is Somewhat Slippery and the distance
between my car and the car in front of me is Quite Close, then I will depress the
acceleration pedal Slightly.
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So, in systems controlled by humans, the control cycle starts by a person convert-
ing a physical quantity (e.g., a distance) from numbers into words or perceptions
(e.g.,Quite Close distance).The input words (or perceptions) then trigger a person’s
knowledge, accumulated through that person’s experience, resulting in words rep-
resenting actions (e.g., depress the acceleration pedal Slightly). The person then
executes an action to actuate a given device that interfaces the person with the con-
trolled system (e.g., depress the acceleration pedal only 10% might represent the
person’s implementation of “depress the accelerator pedal Slightly”). Because peo-
ple think and reason by using imprecise linguistic information, FLCs try to mimic
and convert linguistic control information into numerical control information that
can be used in automatic control systems.

In its attempt to mimic human control actions, a type-1 FLC, whose structure is
shown in Fig. 1.2, is composed of four main components: fuzzifier, rules, inference
engine, and defuzzifier, where the operation of each component is summarized as
follows:

• The fuzzifier maps each measured numerical input variable into a fuzzy set.
Onemotivation for doing this is that measurements may be corrupted by noise
and are somewhat uncertain (even after filtering). So, for example, ameasured
temperature of 26∘C may be modeled as a triangular type-1 fuzzy set that is
symmetrically centered around 26∘C, where the base of the triangle is related
to the uncertainty of this measurement. If, however, one believes that there
is no measurement uncertainty, then the measurements can be modeled as
crisp sets.

• Rules have an if–then structure, for example, If Temperature is Low and
Pressure is High, then Fan Speed is Low. Each IF part of a rule is called its
antecedent, and the THEN part of a rule is called its consequent. Rules relate
input fuzzy sets to output fuzzy sets. All of the rules are collected into a rule
base.

Rules

Defuzzifier

T1 fuzzy input
sets

T1 fuzzy output
sets

Type-1 FLC

Fuzzifier

Inference
engine

Measured crisp
inputs

x u

u = f(x)

Crisp outputs

Figure 1.2 General structure of a type-1 FLC. The heavy lines with arrows indicate the
path taken by signals during the actual operation of the FLC. Rules are used during the
design of the FLC and are activated by the inference engine during the actual operation of
the FLC (Mendel et al. (2006); © 2006, IEEE).
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• The inference engine decides which rules from the rule base are fired and
what their degrees of firing are, by using the fuzzy sets provided to it from the
fuzzifier as well as some mathematics about fuzzy sets. The inference engine
may also combine each rule’s degree of firing with that rule’s consequent
fuzzy set to produce the rule’s output fuzzy set (i.e., its fired-rule output set),
and then combine all of those sets (across all of the fired rules) to produce
an aggregated fuzzy output set using the mathematics of fuzzy sets; or it may
send each rule’s degree of firing directly to the defuzzifier where they are all
aggregated in a different way.

• The defuzzifier receives either the aggregated fuzzy output sets from the
inference engine or the degrees of firing for each rule plus some information
about each consequent fuzzy set, and then processes this data to produce crisp
outputs that are then passed to the physical actuators that control the actual
plant.

In general, real-world control systems, such as fuzzy logic control systems, are
affected by the following uncertainties:

• Uncertainties about the inputs to the FLC. For instance, sensor measurements
can be affected by high noise levels and changing observation conditions such
as changing environmental conditions, for example, wind, rain, humidity, and
so forth. In addition to measurement noise, other possible inputs to the FLC,
such as those estimated by an observer or computed using a process model,
can also be imprecise and exhibit uncertainty.

• Uncertainties about control outputs that can occur because of changes in an
actuator’s characteristics due to wear and tear, environmental changes, and
the like.

• Uncertainties about the change in operating conditions of the controller, such
as changes in a plant’s parameters.

• Uncertainties due to disturbances acting upon the system when those distur-
bances cannot be measured, for example, wind buffeting an airplane.

In a T1 FLC all of these uncertainties are handled by the T1 FSs in the
antecedents and consequents of the rules, as well as through the chosen type of
fuzzifier. Regarding the latter, one may choose to use: (1) a singleton fuzzifier
in which a measured value is treated as perfect and is modeled as a crisp set;
or (2) a type-1 fuzzifier in which a measured value is treated as signal plus
stationary noise and is modeled as a normal, convex T1 FS (also called a T1 fuzzy
number).

The type-1 FLC in Fig. 1.2 is a nonlinear controller that maps its inputs x into
an output u, that is, u = f(x), where f is a nonlinear function that is formed by
fuzzy logic operations and the mathematics of fuzzy sets. Often, f(x) is formed
from linguistic rules that summarize human knowledge or experience (or may be
constructed from data); thus, the type-1 FLC directly maps such knowledge or



6 INTRODUCTION

experience into a nonlinear control law whose explicit mathematical expression
is unknown in most cases.

Many researchers (e.g., Wang, 1992; Wang and Mendel, 1992a; Castro, 1995;
Kosko, 1994; Kreinovich et al. 1998) have shown that the type-1 FLC f(x) can
uniformly approximate any real continuous function on a compact domain to any
degree of accuracy; hence, FLCs are known to be universal approximators. One
way to interpret what this means is that the FLC f(x) approximates a function
by covering its graph with fuzzy patches (Kosko, 1994), where each rule in the
FLC defines a fuzzy patch in system’s input–output space, and it then averages
overlapping patches. This approximation improves as the fuzzy patches grow
in number and shrink in size; however, as more smaller patches are included,
the complexity of the model increases (i.e., the number of fuzzy sets and rules
increases).

Type-1 FLCs produce nonlinear control laws f(x) that cannot be effectively
generated by any other mathematical means because such f(x) are derived from
linguistic if–then rules. This has enabled fuzzy logic control to be used in complex
ill-defined processes, especially those that can be controlled by a skilled human
operator without the knowledge of their underlying dynamics (Mamdani and
Assilian, 1975).

Recall that variable structure control (VSC) is a form of discontinuous nonlin-
ear control that alters the dynamics of a nonlinear system through the application
of high-frequency switching control. A T1 FLC can also be regarded as a vari-
able structure controller by virtue of the mathematics of fuzzy sets and systems;
that is, it partitions the state space automatically rather than by a planned design.
This is because different rules are activated for different regions of the state space.
Palm (1992) showed that an FLC can be regarded as an extension of a conventional
variable structure controller with a boundary layer.

There are two widely used architectures for a type-1 FLC that mainly differ in
their fuzzy rule consequents. Those architectures, both of which are examined in
this book, are:

• Mamdani FLC, developed by Mamdani and Assilian (1975) in which the
antecedents and consequents of the rules are linguistic terms, for example:
If x1 is Low and x2 is High, then u is Low. The linguistic labels in a Mamdani
FLC are represented by type-1 fuzzy sets.

• Takagi–Sugeno (TS) FLC or Takagi–Sugeno–Kang (TSK) FLC (Takagi and
Sugeno, 1985) in which the antecedents of the rules are also linguistic terms
(modeled as type-1 fuzzy sets), but each rule’s consequent is modeled as a
mathematical function of the input variables, for example: If x1 is Low and x2

is High, then u = g(x1, x2), where g(x1, x2) is a polynomial function of x1 and
x2 (this can include a constant, a linear or affine function, a quadratic function,
etc.). An example of a first-order TSK FLC rule, the most widely used order,
is: If x1 is Low and x2 is High, then u = c0 + c1x1 + c2x2, where c0, c1, and c2

are the consequent parameters.
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1.4 WHAT IS A TYPE-2 FUZZY SET?

Because T1 FSs (e.g., as in Fig. 1.1b) are themselves crisp and precise (i.e., their
MFs are supposedly known perfectly), this does not allow for any uncertainties
about membership values, which is a potential shortcoming when using such fuzzy
sets. A type-2 fuzzy set (T2 FS) is characterized by a fuzzy MF, that is, the mem-
bership value for each element of this set is itself a fuzzy set in [0,1]. The MFs of
T2 FSs are three dimensional (3D) and include a footprint of uncertainty (FOU)
(which is shaded in gray in Fig. 1.3a). It is the new third dimension of T2 FSs
(e.g., Fig. 1.4c) and its FOU that provide additional degrees of freedom that make
it possible to directly model and handle MF uncertainties.

In Fig. 1.3a, observe that the 26∘C membership value in Hot is no longer a crisp
value of 0.8 (as was the case in Fig. 1.1b); instead, it is a function that takes values
from 0.6 to 0.8 in the primary membership domain, and maps them into a triangular
distribution in the third dimension (Fig. 1.3b), called a secondary MF. This trian-
gular secondary MF weights the interval [0.6, 0.8] more strongly over its middle
values and less strongly away from those middle values. Of course, other weight-
ings are possible, including equal weightings, in which case the T2 FS is called an
interval type-2 FS (IT2 FS). Being able to choose different kinds of secondary MFs
demonstrates one of the flexibilities of T2 FSs.

Figure 1.4c depicts the 3D MF of a general T2 FS whose secondary MFs [fx(u)]
are triangles. By convention, such a T2 FS is called a triangular T2 FS. Its FOU
is depicted in Fig. 1.4a and its secondary MF at x′ [fx′ (u)] is depicted by the solid
triangle in Fig. 1.4b. When the secondary membership values equal 1 for all the
primary membership values (as in the dashed curve in Fig. 1.4b), this results in
an interval-valued secondary membership function, and, as just mentioned, the
resulting T2 FS is called an IT2 FS. In Fig. 1.4c, 𝜇(x, u) denotes the MF value
at (x, u).

Figure 1.5 depicts the FOU of an IT2 FS for Low. The three dashed functions
that are embedded within that FOU are T1 FSs. Clearly, one can cover this FOU
with a multitude of such T1 FSs. At this point it is not important whether there are a
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Figure 1.3 Type-2 fuzzy sets: (a) FOU and a primary membership and (b) a triangle
secondary membership function.
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Figure 1.4 (a) FOU with primary membership (dashed) at x′, (b) two possible secondary
membership functions (triangle in solid line and interval in dashed line) associated with x′,
and, (c) the resulting 3D type-2 fuzzy set.
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Figure 1.5 Three type-1 fuzzy sets that are embedded in the FOU of Low.

countable or uncountable number of such T1 FSs. What is important is interpreting
an IT2 FS as the aggregation of amultitude ofT1 FSs.This suggests thatT1 FSs and
everything that is already known about them can be used in derivations involving
IT2 FSs, something that is exploited very heavily in this book. This interpretation
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also plays a very important role in understanding why an IT2 FLCmay outperform a
T1 FLC, something that we shall return to in the section below and in other chapters
of this book.

1.5 WHAT IS A TYPE-2 FUZZY LOGIC CONTROLLER?

A type-2 FLC is depicted in Fig. 1.6. It contains five components: fuzzifier, rules,
inference engine, type reducer, and defuzzifier. In a T2 FLC the inputs and/or out-
puts are represented by T2 FSs, and it operates as follows: crisp inputs, obtained
from input sensors, are fuzzified into input T2 FSs, which then activate an inference
engine that uses the same rules used in a T1 FLC to produce output T2 FSs. These
are then processed by a type reducer that projects the T2 FSs into a T1 FS (this step
is called type reduction) (Karnik et al., 1999; Liang and Mendel, 2000) after which
that T1 FS is defuzzified to produce a crisp output that, for example, can be used
as the command to an actuator in the control system. Type reduction followed by
defuzzification is usually referred to as output processing.

In Section 1.3 we presented some sources of uncertainties that face real-world
control systems in general. FLCs are also affected by:

• Linguistic uncertainties because the meaning of words that are used in the
antecedents’ and consequents’ linguistic labels can be uncertain, that is,words
mean different things to different FLC designers (Mendel, 2001).

• In addition, experts do not always agree and they often provide different con-
sequents for the same antecedents. A survey of experts will usually lead to a
histogram of possibilities for the consequent of a rule; this histogram repre-
sents the uncertainty about the consequent of a rule (Mendel, 2001).

Type-2 FLC

Type-reduced set

T1 FS

Output processing

Rules

Type reducer

T2 Fuzzy input

sets

T2 fuzzy output

setsInference

engine

Measured crisp

inputs

Crisp outputs

Fuzzifier
x

u

u = f(x)

Defuzzifier

Figure 1.6 Overview of the architecture of a T2 FLC. The heavy lines with arrows indicate
the path taken by signals during the actual operation of the FLC. Rules are used during the
design of the FLC and are activated by the inference engine during the actual operation of
the FLC (Mendel et al., 2006; © 2006, IEEE).
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In a T2 FLC all of these uncertainties are modeled by the T2 FSs’ MFs in the
antecedents and/or consequents of the rules, as well as by the kind of fuzzifier.
Regarding the latter, one may choose to use: (1) a singleton fuzzifier (as in a T1
FLC) in which a measured value is treated as perfect and is modeled as a crisp
set; (2) a type-1 fuzzifier (as in a T1 FLC) in which a measured value is treated as
signal plus stationary noise and is modeled as a normal, convex T1 FS (also called
a T1 fuzzy number); or (3) a type-2 fuzzifier in which a measured value is treated
as signal plus nonstationary noise and is modeled as a normal, convex T2 FS.

As we have explained in Section 1.4, a T2 FS can be thought of as a collection
of many embedded T1 FSs (Mendel and John, 2002a). A T2 FLC may, therefore,
be conceptually thought of as a collection of many (embedded) T1 FLCs whose
crisp output is obtained by aggregating the outputs of all the embedded T1 FLCs
(Karnik et al., 1999). Consequently, a T2 FLC has the potential to outperform a
T1 FLC under certain conditions because it deals with uncertainties by aggregating
a multitude of embedded T1 FLCs. The actual implementation of a T2 FLC does
not actually require such an aggregation, but in this first chapter of this book, it is
helpful to think of the output of a T2 FLC in this way.

Just as a T1 FLC is a variable structure controller so is a T2 FLC, and just as
a T1 FLC has two architectures, Mamdani and TSK, a T2 FLC also has those two
architectures. In aT2 Mamdani orTSK FLC, the fuzzy sets are type-2. Like theirT1
FLC counterparts, T2 Mamdani and TSK FLCs are universal approximators (Ying,
2008, 2009). Both of these T2 FLC architectures will be covered in this book.

1.6 DISTINGUISHING AN FLC FROM OTHER NONLINEAR

CONTROLLERS

Nonlinear control involves a nonlinear relationship between the controller’s inputs
and outputs and is more complicated than linear control; however, it is able to
achieve better performance than linear control for many real-world control appli-
cations. Nonlinear control theory requires more challengingmathematical analy-
sis and design than does linear control theory.

As mentioned in Section 1.3, an FLC is a nonlinear controller, that is, the func-
tion f(x) is nonlinear. This will be demonstrated in later chapters of this book. What
distinguishes an FLC, T1 or T2, from other nonlinear controllers is that it generates
its nonlinear mapping function f(x) through linguistic if–then rules and linguis-
tic terms for the antecedents and consequents of the rules (e.g., Low Temperature,
High Pressure). Such rules can be (easily) obtained from a human operator or can be
postulated and learned from data. According to Kosko (1994), an FLC is unique in
that it ties vague words like Low and High, and common sense rules, to state-space
geometry.

According to Mamdani (1994), when tuned, the parameters of a PID controller
affect the shape of the entire control surface. Because fuzzy logic control is a
rule-based controller, the shape of the control surface can be individually manipu-
lated for the different regions of the state space, thus limiting possible effects only
to neighboring regions.
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Fuzzy logic controllers have two important advantages over other classes of
nonlinear controllers, namely (1) they are able to incorporate linguistic terms in
the designs of the input–output membership functions, and (2) they are capable of
handling uncertainties in inputs and state measurements more effectively. More-
over, similar to other classes of nonlinear controllers, they can be mathematically
expressed, analyzed, and designed.

If the FLC rules are obtained from a group of experts, they may not all agree on
the rule’s consequents. By using T2 FSs, one is able to model the group’s histogram
of rule consequents, something that cannot be done by using a T1 FLC.

An FLC can be studied like any other nonlinear controller, for example, for
the Mamdani FLC, stability and robustness studies can be performed by exten-
sive simulations and by analyzing its control surface; see Fig.1.7, which depicts
the mathematical function that maps robot controller inputs [e.g., right sensor front
(RSF) and right sensor back (RSB)] into a control output (e.g., Steering). For a
TSK FLC, it is possible to perform the same kinds of mathematical analyses that
are applied to other nonlinear controllers, such as Lyapunov stability and robust-
ness, and the like. Performance analyses of T2 Mamdani and TSK FLCs are given
in later chapters of this book.

1.7 T2 FLCs VERSUS T1 FLCs

Type-1 FLCs use T1 FSs that have precise MFs, that is, there is nothing uncertain
about such MFs. The following uncertainties that an FLC may encounter have been
enumerated in Section 1.3: uncertainties about the inputs to the FLC, the control
outputs, changing operating conditions of the controller, and disturbances acting
upon the plant. Such uncertainties must somehow bemapped into MF uncertainties,
and this is feasible to a greater extent in a T2 FLC than it is in a TI FLC because of
the “noncrisp” nature of a T2 FS, the FOU for an IT2 FLC, or the combination of
an FOU and secondary MFs for a general T2 FLC.

In addition to the above traditional kinds of uncertainties, which affect any kind
of a controller, fuzzy or nonfuzzy, an FLC is also affected by the following addi-
tional uncertainties:

• Uncertainties about a rule’s consequent, when rules are obtained from a group
of experts, because, as we have mentioned above, experts do not generally all
agree on the same consequent.

• Linguistic uncertainties about the meanings of the words used in a rule’s
antecedent and consequent linguistic terms, because words mean different
things to different people (Mendel, 2001).

• Uncertainties associated with noisy training data that may be used to optimize
(learn, tune) the MF parameters of an FLC.

It is difficult to directly model or minimize the effects of such uncertainties using
T1 FSs. Consequently, using T1 FSs in an FLC may cause degradation in the per-
formance of such a system.
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Figure 1.7 (a) Control surface of a robot T2 FLC with 4 rules, (b) control surface of a
robot T1 FLC with 4 rules, (c) control surface of a robot T1 FLC with 9 rules, and (d)
control surface of a robot T1 FLC with 25 rules (Hagras, 2004; © 2004, IEEE).

Because the MFs of a T2 FS are fuzzy, that is, have an FOU (and secondary MFs
for a general T2 FS), they have more design degrees of freedom; hence, they have
a greater potential to better model and handle all of the uncertainties just described
in comparison to T1 FSs. Consequently, an FLC that is based on T2 FSs has the
potential to produce better performance than a T1 FLC when dealing with such
uncertainties. Observe that we have twice put emphasis on the word “potential.”
We have done this so as not to fool the reader into believing that a T2 fuzzy logic
control system will always outperform a T1 fuzzy logic control system. The later
chapters in this book will examine and compare the relative performances of both
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T1 and T2 fuzzy logic control systems so that we may all better understand when or
if a T2 fuzzy logic control system will outperform a T1 fuzzy logic control system.

As a preview to what will be demonstrated in those chapters, we note the fol-
lowing from Hagras (2004), Hagras (2007), and Wu (2012):

1. Using T2 FSs to represent the FLC inputs and outputs can lead to a smaller
FLC rule base because MF uncertainties, represented by the FOUs of T2 FSs,
let the T2 MFs cover the same range as T1 FSs, but with a smaller number of
terms.This rule reduction (at the expense ofmore complicated MFs) increases
as the number of FLC inputs increases.

2. A T2 FLC may give a smoother control surface than its T1 counterpart, espe-
cially in the region around the steady state [for a proportional–integral (PI)
controller this means both the error and the change of error approach zero].
For example, Wu and Tan (2010) have shown that when a baseline T1 FLC
implements a linear PI control law and the IT2 FSs of an IT2 FLC are obtained
from symmetrical perturbations of the respective T1 FSs, the resulting IT2
FLC implements a variable gain PI controller around the steady state. These
gains are smaller than the PI gains of the baseline T1 FLC, which results in
a smoother control surface around the steady state. The PI gains of the IT2
FLC also change with the inputs, something that cannot be achieved by the
baseline T1 FLC.

3. Type-2 FLCs may realize more complex input–output relationships than T1
FLCs. Karnik et al. (1999) pointed out that an IT2 fuzzy logic system can be
thought of as a collection of many different embedded T1 fuzzy logic systems
(as mentioned above). Additionally, Wu and Tan (2005) proposed a system-
atic method to identify the equivalent generalized T1 FSs that can be used
to replace the FOU. They showed that the equivalent generalized T1 FSs are
significantly different from traditional T1 FSs, and there are different equiv-
alent generalized T1 FSs for different inputs. Du and Ying (2010) and Nie
and Tan (2010) also showed that a symmetrical IT2 fuzzy PI [or the corre-
sponding proportional–derivative (PD)] controller, obtained from a baseline
T1 PI FLC, partitions the input domain into many small regions, and in each
region the IT2 fuzzy PI controller is equivalent to a nonlinear PI controller
with variable gains. The control law of the IT2 FLC in each small region is
much more complex than that of the baseline T1 FLC, and hence it can real-
ize more complex input–output relationships that cannot be achieved by a T1
FLC using the same rule base.

4. Type-2 FLCs have a novelty that does not exist in traditional T1 FLCs. Wu
(2011) showed that in an IT2 FLC differentmembership grades from the same
IT2 FS can be used in different rules (due to an IT2 FS being described by
lower and upper MFs),whereas for a traditionalT1 FLC the samemembership
grade from the same T1 FS is always used in the different rules. This further
supports item 3, that an IT2 FLC can realize more complex input–output rela-
tionships than a T1 FLC, and that an IT2 FLC cannot be implemented by a
T1 FLC using the same set of rules.
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Figure 1.7,which shows control surfaces for an outdoormobile robot, demonstrates
how a T2 FLC with a rule base of only four rules (Fig. 1.7a) can produce a smoother
control surface than its T1 counterparts that use a rule base of 4 (Fig. 1.7b),
9 (Fig. 1.7c), and 25 rules (Fig. 1.7d), respectively (Hagras, 2004). Observe, also,
that as the T1 FLC rule base increases, its response approaches that of the T2 FLC
because the latter includes a multitude of embedded type-1 FLCs.

1.8 REAL-WORLD APPLICATIONS OF IT2 MAMDANI FLCs

The last 10 years have witnessed a continuous increase in the deployment of IT2
Mamdani FLCs to real-world control problems. This trend promises to replicate
the widespread use of type-1 FLCs to applications that touch the lives of people
all over the world. The following subsections provide a brief overview of some of
recent IT2 Mamdani FLCs for real-world control applications that are grouped into
high-level application areas. We want to emphasize that all of the reported results
are for specific systems and that we do not claim they apply universally. They are
meant to whet the curiosity of the reader about potential performance improvements
of IT2 FLC over T1 FLC, so as to encourage him or her to read the rest of this book.

1.8.1 Applications to Industrial Control

1.8.1.1 Speed Control of Marine Diesel Engines The first heavy-industry
application of IT2 Mamdani FLCs was for the speed control of marine diesel
engines (Lynch et al., 2005, 2006a, 2006b). These are huge engines classified
according to their speeds, as slow-speed engines, medium-speed engines, or
high-speed engines.

Due to their vast size and large power output, marine diesel engines require accu-
rate and robust speed control/governing. Accurate speed control of such engines
is of critical importance because significant deviations from the speed set point
can be detrimental and damaging to the engine and its respective loads. Moreover,
for applications such as power generation sets, the engine speed in revolutions per
minute (rpm)must be stable in relation tomultiples of the generated base frequency,
that is, 50 Hz frequency requires the engine to operate at 1000 rpm, 1500 rpm, and
so forth; hence, significant speed deviation can cause the generation of incorrect
frequencies, resulting in loss of synchronization between the generator and its asso-
ciated power grid, which is very problematic for any power generation system and
its coupled loads.

Robustness in speed control is required for the marine diesel engine to overcome
and recover quickly from the inherent instabilities and disturbances associated with
the fast and dynamic changes of the environment, as well as load and operating
conditions that marine diesel engines are exposed to on an everyday basis.

The ability to provide improved speed control response formarine diesel engines
is not just desirable but is a requirement of the British Standard BS5514 “Recipro-
cating Internal Combustion Engines: Speed Governing,” which details regulations
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concerning the speed controller’s ability to recover from load changes and distur-
bances in terms of settling time, overshoot, and undershoot (British Standards).

Marine diesel engines operate in highly dynamic and uncertain environments
and experience vast changes in ambient temperature, fuel, humidity, and load.There
are many sources of uncertainty facing speed controllers of marine diesel engines,
including:

• Uncertainties associated with the change in engine operation and load con-
ditions due to varying loads, weather and sea conditions, wind strength, hull
fouling (growth of algae, sea grass, and barnacles), and vessel displacement
(which is dependent on cargo). For example, the resistance (the force work-
ing against the ship propulsion) as a result of weather and sea variations can,
in general, increase by as much as 100% of the total ship resistance in calm
weather. Also, experience shows that hull fouling may cause an increase of
up to 40% in ship resistance. An increase in ship resistance can consequently
cause a drastic reduction of the ship’s speed and significant vibration that can
affect the engine’s sensors and actuators. These uncertainties are considered
to be the most dynamic and severe uncertainties that can affect both the inputs
and output of the FLC and can cause serious degradation in the performance
of the marine diesel engine.

• Uncertainties affecting the inputs to the controller, because sensor measure-
ments are affected by high noise levels from various sources, such as electro-
magnetic and radio frequency interference, and vibration-induced triboelec-
tric cable charges.

• Uncertainties affecting the outputs of the controller, which can be due to the
change of the actuator’s characteristics because of wear and tear or environ-
mental changes, for example, worn linkages between the actuator output and
the fuel pump can result in excessive friction and/or backlash causing insta-
bility in the control loop.

• Linguistic uncertainties because themeanings of the words that are used in the
antecedent’s and consequent’s linguistic labels are inherently uncertain, since
words mean different things to different engineers,which causes uncertainties
when designing the FLC for marine diesel engine control.

Due to the size and cost of marine diesel engines it is important to test and verify
the engine speed controllers under different operating and load conditions before
their deployment on a specific engine.

Speed controllers can be tested and verified by using the testing platform
depicted in Fig. 1.8. This testing platform is designed to realistically reflect the
characteristics and operating conditions of the marine diesel engines and has the
ability to alter speed,1 load, inertia, and torque. It uses the real-world noisy sensors
that are used by a specific marine diesel engine and has the ability to introduce the
same uncertainty levels faced by that engine.

1The speed of a marine diesel engine is associated with the rate of fuel delivery to its cylinders, which

is a function of a hydraulic servoactuator that is controlled by an electronic embedded speed controller.
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Figure 1.8 Marine diesel engine testing platform (Hagras, 2007; © 2007, IEEE).
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Figure 1.9 Control surfaces for (a) T1 Mamdani FLC and (b) IT2 Mamdani FLC (Hagras,
2007; © 2007, IEEE).

Figure 1.9a depicts the control surface for a T1 Mamdani FLC that was used in
one of themarine diesel engine’s speed controllers, and Fig. 1.9b depicts the control
surface of an IT2 Mamdani FLC that was used for the same engine. Observe that the
control surface for the T1 FLC is steep and nonsmooth, especially near the set point
where the error (e) between the speed set point and the actual value, as well as the
change of error (d), should both be equal to zero. Consequently, any small variations
of e and d can cause considerable changes to the manipulated variable (mv) (i.e., the
actuator controlling the fuel supply to the engine), which means that the T1 FLC is
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vulnerable to noise and uncertainties. Moreover, the larger the variations in e and
d, due to the uncertainties, the larger are the disturbances to mv, which can cause
instability and can potentially lead to the destruction of the engine.

The control surface that is depicted in Fig. 1.9b for the IT2 Mamdani FLC shows
a very smooth and gradual response with no steep changes because it is (in theory)
aggregating the outputs of a large number of embedded T1 FLCs. This smooth
response gives very good control performance and can handle the uncertainties
and disturbances that are near the set point where e = 0 and d = 0, that is, small
variations in e and d do not cause significant changes to mv.

Many control experiments were performed in order to evaluate the performance
of the IT2 and T1 Mamdani FLCs for handling uncertainties. The real operation
of the diesel engines was mimicked where in each experiment the controllers were
allowed to reach the set point and stabilize with no load, after which different loads
were added suddenly tomimic the uncertainties associated with change of operation
and load conditions. It is necessary for the diesel engine’s speed controller to be able
to deal quickly with the uncertainties associated with a change of load (for up to a
100% load addition) producing minimum overshoot/undershoot and settling times
that must be in accordance with the British Standard BS5514 (British Standards).

In Lynch et al. (2006a), an IT2 Mamdani Real-Time Neuro-Fuzzy Controller2

(RT2NFC) was developed. The performance of the RT2NFC was compared to the
performances from a T1 FLC and a Viking 25 controller. The latter has been used
in the past to control marine diesel engines and uses a PID algorithm with various
nonlinear and gain-scheduling functions. Both the T1 and IT2 FLCs were coded
in ANSI C and embedded in the industrial controller. For the engine testing plat-
form, a set point of 905 rpm was chosen that corresponds with the requirements of
medium-speed diesel engines.

All three controllers were tuned so that they could handle disturbances that were
equivalent to 20% of the full load (which is a common disturbance for engines at
a normal sea condition). It was noticed (not shown here) during the design process
that the performances from all three controllers were very similar for the 20% load
disturbance that they were designed to handle. However, as the uncertainty asso-
ciated with the change of load increased to 100% load, the performance of both
the Viking 25 and T1 FLC degraded significantly (see Fig. 1.10), producing large
overshoots/undershoots as well as long settling times; hence, the performance of
the Viking 25 and the T1 FLCs became unacceptable under these levels of uncer-
tainties, which did not satisfy the desired standards.

A common practice in such situations is to retune the controller, which is a
time-consuming process. The IT2 Mamdani FLC effectively handled the uncer-
tainties associated with the change of the load and operating conditions to give
a very good performance with small overshoots/undershoots as well as short set-
tling times (see Fig. 1.10). The performance of the IT2 Mamdani FLC satisfied
the required standards and required no further tuning. Therefore, the IT2 Mamdani

2A neuro-fuzzy controller is an FLC whose MF parameters are optimized using a tuning algorithm such

as the back-propagation algorithm that is commonly used to tune the weights of a neural network.
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Figure 1.10 Comparison of the responses of the T1 FLC and Viking 25 against a T2NFC
with 100% load addition (Lynch et al., 2006b; © 2006, IEEE).

FLC could be used effectively to produce accurate and robust speed controllers for
marine diesel engines.

1.8.1.2 Liquid-Level Process Control In Wu andTan (2004), a genetic algo-
rithm3 was used to design an IT2 Mamdani FLC to control a liquid-level process.
The controlled process is the coupled tank apparatus depicted in Fig. 1.11a, which
consists of two small tower-type tanks mounted above a reservoir that stores water
that is pumped into the top of each tank by two independent pumps. The level of
water in each tank is measured using a capacitive-type probe sensor, and each tank
is outfitted with an outlet at the side near its base. Raising the baffle between the
two tanks allows for water to flow between them. The amount of water that returns
to the reservoir is approximately proportional to the square root of the height of
the water column in the tank, and this is the main source of nonlinearity in this
coupled-tank system. The volumetric flow rate of the pumps in the coupled-tank
apparatus is nonlinear, and the system has nonzero transport delay.

It was observed (not shown here) that both the T1 and IT2 FLCs were able to
attenuate oscillations when the modeling uncertainties were small. The liquid level
in a tank eventually reached the desired set point, although the settling time was
shorter when the IT2 FLC was used.

When, however, modeling uncertainties became larger, the T1 FLC gave rise to
persistent oscillations (see Fig. 1.11b), whereas the IT2 FLC was able to eliminate
these oscillations and the liquid level reached its desired height at steady state. Wu

3A genetic algorithm is a biologically inspired optimization algorithm that is used for tuning the MF

parameters of the FLC as well as many other kinds of systems such as a neural network. See Section

3.6.2 for more details.
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Figure 1.11 (a) Coupled-tank liquid-level control system and (b) T1 FLC (solid line) and
IT2 FLC (dashed line) responses (Wu and Tan, 2004; © 2004, IEEE).

and Tan (2004) concluded that the IT2 FLC is more robust than the T1 FLC because
the IT2 FLC outperformed its T1 FLC counterpart, especially when the uncertainty
was large.

1.8.1.3 Control of Entry Temperature of a Steel Hot Strip Mill Mendez
et al. (2010) applied a Mamdani IT2 FLC to control the coiling entry temperature of
a steel hot strip mill (HSM). Figure 1.12a depicts an overview of an HSM from its
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Figure 1.12 (a) Overview of a hot strip mill and (b) photo of a laminar cooling header at
run-out table (Mendez et al., 2010).

initial stage at the reheat furnace entry to the final stage at the coiler side. In HSM
there is a major need to satisfy quality requirements, for example, steel strip thick-
ness, finishing temperature, and coiler temperature (the latter determines the final
strip’s mechanical properties). The most critical section of the coil is the head-end
section due to the uncertainties involved at the head end of the incoming steel bar
and the varying conditions from bar to bar.

As of 2010, in order to achieve head-end quality requirements, automation sys-
tems based on physical modeling were used, particularly for the reheat furnace,
roughing mill (RM), finishing mill (FM), and the run-out cooling zone. As the mar-
ket became more competitive, there was a need for flexible manufacturing capable
of rolling a wider range of products in shorter periods of time. Such flexibility
requirements yield higher time-varying conditions for the rolling process, thereby
demanding automation systems that are better able to handle the encountered uncer-
tainties. Most commercial systems employ proportional or proportional–integral
controllers, which only compensate for the errors under current conditions; hence,
the first batch in a given production cycle is usually below the given specifications.

A slab generally leaves the furnace at∼1200∘C and is transported to the roughing
mill by the transfer table. After several passes, the roughing stands adjust the slab
thickness from ∼200 to ∼28 mm. The product from the roughing mill is called
the transfer bar. The transfer bar is taken to the finishing mill where the finishing
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temperature and final width specifications have to be fulfilled. During the time the
transfer bar travels from the roughing mill to the finishing mill scale forms on its
surface. The scale breaker washes out the scale in order to allow proper rolling of
the bar. Figure 1.12b shows a photograph of a top strip laminar cooling header.
There are 34 top cooling headers divided into 6 sections of top header control. In
addition, there are 27 bottom cooling headers divided into 3 sections of bottom
spray control, giving 9 control sprays.

Strip resistance, and therefore force and gap setup, depend greatly on the strip
temperature of the incoming bar, which is also essential for the speed setup, since
strip temperature of the incoming bar depends on the entry bar thread speed, and
the former is required to achieve both the specified finishing mill exit target head
gauge and temperature. However, the bar surface temperature measurement at the
scale breaker entry is not reliable due to scale formation and is therefore measured
using a pyrometer located at the roughing mill exit side. Later, the head-end bar
scale breaker entry temperature is estimated and used for the finishing mill and
run-out cooling setup. The measurement at the roughing mill exit is affected by
noise produced by transfer bar scale growth, environmental water steam, pyrometer
location, calibration, resolution, and repeatability.

Experiments and results presented in Mendez et al. (2010) show that IT2 FLCs
are able to model and control the cooling water flow to achieve the target coiler
entry temperature in an HSM. They show that there is a substantial improvement
in performance and stability of an IT2 Mamdani FLC over a T1 Mamdani FLC
(e.g., Fig. 1.13). As can be seen from this figure, the IT2 FLC converged under real
production conditions and had better performance in terms of the root-mean-square
error (RMSE) than the T1 FLC. These results show the feasibility of the IT2 FLC
for this particular industrial application.
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Figure 1.13 Root-mean-squared errors (RMSEs) for type-A cooling coil: (*) T1 FLC and
(•) IT2 FLC models (Mendez et al., 2010).
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Figure 1.14 High-precision milling setup at Mondragón University (Spain). (a) Side view
and (b) front view (Ren et al., 2010; © 2010, IEEE).

1.8.1.4 Modeling of Micromilling Cutting Forces Ren et al. (2010)
designed an IT2 Mamdani FLC for the estimation of dynamic micromilling cutting
forces. The resulting system was tested at the Micro-machining Laboratory at the
Mondragón University in Spain. Figure 1.14 shows the actual setup. Researchers
there noted that type-2 fuzzy estimation not only filters the noise and estimates the
instantaneous cutting force in micromilling using observations acquired by sensors
during cutting experiments but also assesses the uncertainties associated with the
prediction caused by the manufacturing errors and signal processing. Moreover,
the interval output of the type-2 fuzzy system gives very useful information to
machine tool controllers in order to maximize material removal while controlling
tool wear or tool failure to maintain part quality specifications.

1.8.1.5 Thyristor-Controlled Series Capacitor to Improve Power

System Stability Tripathy and Mishra (2011) applied a Mamdani IT2 FLC
to a thyristor-controlled series capacitor (TCSC) for improving power system
stability. They report that the IT2 FLC along with the power system stabilizer
(PSS) in the system satisfactorily damp out the speed and power oscillations
following different critical faults. They show that the damping performance of the
IT2 FLC is considerably better compared to its fixed gain bacteria-swarm-based
tuned PSS and TCSC counterpart. Moreover, the performance of the IT2 FLC did
not deteriorate even under uncertainty in the input signal to the controller, which
shows the power of the IT2 Mamdani FLC in providing adequate performance
even under conditions of increased uncertainty (in the inputs).

1.8.1.6 Control of Buck Direct-Current–Direct-Current (DC–DC)

Convertors Lin et al. (2005) applied an IT2 Mamdani FLC to the control
of buck DC–DC converters, which are nonlinear power electronic systems that
convert one level of electrical voltage into another level by a switching action.
They are used extensively in personal computers, computer peripherals, and
adapters of consumer electronic devices.
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Figure 1.15 Block diagram of an IT2 FLC DC–DC converter system (Lin et al., 2005;
© 2005, IEEE).

A control technique for DC–DC converters must cope with their wide input
voltage and load variations to ensure stability in any operating condition while pro-
viding fast transient response. The control problem is to control the duty cycle so
that the output voltage can supply a fixed voltage in the presence of input voltage
uncertainty and load variations.

A block diagram of the IT2 Mamdani FLC DC–DC converter system is
depicted in Fig. 1.15. Lin et al. (2005) have shown that the performance of an IT2
Mamdani FLC is better than its T1 counterpart, namely the rise time response
of the IT2 Mamdani FLC is faster than that of T1 FLC and the former has no
overshoot.

1.8.2 Airplane Altitude Control

Zaheer and Kim (2011) applied an IT2 Mamdani FLC to airplane altitude con-
trol for a propulsion-based airplane as shown in Fig. 1.16a. The throttle is used to
regulate the speed of the airplane by varying the rotational speed of the propeller,
the elevator is used to control the airplane’s ascent and descent, the ailerons are
used for airplane’s lateral stabilization and midair turning, and the rudder is used
for the on-ground taxiing of the airplane. They compared T1 and IT2 Mamdani
FLCs for airplane control, and found that under high uncertainty levels, the IT2
Mamdani FLC outperformed the T1 FLC, namely that the T1 FLC showed oscil-
latory behavior around the reference altitude set points as shown in Figs. 1.16b
and 1.16c.
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Figure 1.16 (a) Basic airplane control; (b) results of the T1 FLC in the simulation
setup with uncertainties [bottom blocks are the magnified steady-state responses (RMSE =
3.58 m)]; and (c) results of IT2 Mamdani FLC in the simulation setup with uncertainties
[bottom blocks are the magnified steady-state responses (RMSE = 0.43 m)] (Zaheer and
Kim, 2011; © 2011, IEEE).

1.8.3 Control of Mobile Robots

Autonomous mobile robots navigating in real-world unstructured environments
must be able to operate under conditions of imprecision and uncertainties present
in such environments, where the uncertainties can be in the form of numerical
uncertainties4 (that affect the inputs and/or outputs of the controller). The
numerical uncertainties associated with changing unstructured environments cause

4Numerical uncertainties refer to noise and change of the sensor signal due to change of operating

conditions, for example, an ultrasound sensor assumes that the speed of sound is constant, however, the

speed of sound varies with wind, rain, humidity, and the like, so a sonar sensor at a distance of 1 m will

read different readings in wind, rain, and so forth.
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Figure 1.17 (a) Outdoor robot path using IT2 Mamdani FLC to implement the right edge
following behavior to follow an irregular edge and (b) robot path using a T1 Mamdani FLC,
which gave a poor response when the environment changed (windy weather) (Hagras, 2004;
© 2004, IEEE).

problems in determining the exact and precise antecedents’ and consequents’
membership functions during the FLC design. The designedT1 fuzzy sets can
be suboptimal for specific environment and robot conditions; however, as the
robot operating conditions change from the design conditions, the T1 fuzzy
sets will not be optimal any more, which can cause degradation in the mobile
robot FLC performance. Hagras (2004) employed an IT2 Mamdani FLC for
mobile robot control involving indoor and outdoor robots and found that the IT2
FLC always outperformed its T1 counterpart, and it also used a smaller number
of rules. The former was demonstrated by examining robot paths and control
surfaces (see Fig. 1.7). For the robot shown in Fig. 1.17a, the control surface of
the IT2 Mamdani FLC has a smooth shape, which translated into a smooth control
response that was able to deal effectively with uncertainty and imprecision. By
means of control surface analyses, the more T1 fuzzy sets were used in the T1 FLC
the more its response approached the smooth response of the IT2 Mamdani FLC
(see Figs. 1.7b–1.7d). This is because the T2 fuzzy sets contain a large number of
embedded T1 fuzzy sets, which allow for the detailed description of the control
surface.

Hagras (2004) also performed experiments with robots in outdoor unstructured
environments in order to evaluate the real-time performance of the robot IT2 FLC so
as to see how they could handle large amounts of uncertainty and imprecision, as is
present in such changing and dynamic environments. The robots were tested under
different environmental conditions (e.g., rain, wind, sunshine), different ground
conditions (e.g., slippery and dry ground), and at different times of the day. These
experiments also involved using different challenging environmental features such
asmetallic and vegetation edges,which result in poor responses (i.e., echo) from the
ultrasound sensor. They observed that the T1 FLC gave a good response under spe-
cific weather, ground, and robot conditions, but if any of these conditions changed,
for example, when operating in windy weather conditions, then a nine-rule T1 FLC
controlling the robot (see Fig. 1.17b) gave a poor oscillatory response because it
could not handle the uncertainties associated with the outdoor environment condi-
tions. On the other hand, they observed that the IT2 Mamdani FLC controlling the
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Figure 1.18 (a) Typical robot soccer platform, (b) player paths when a T1 FLC was used,
and (c) player paths when an IT2 Mamdani FLC was used (Figueroa et al., 2005; © 2005,
IEEE).

robot (see Fig. 1.17a) could handle such uncertainties and gave a better response
while also using a smaller rule base.

Figueroa et al. (2005) described an IT2 Mamdani FLC for a robotic agent that
tracks a mobile object in the context of robot soccer games, where the robotic agent
has to track a ball accurately. In this application, the final goal of a player is to reach
the position of the ball.

In robotic soccer games, positions of players and balls are captured through
image processing because it is simple to do this. The basic configuration of a typi-
cal platform for robotic soccer games is shown in Fig. 1.18a; it comprises a football
pitch (ground plane), a camera for image capture, one or two computers (server and
client), and an radio frequency (RF) data transmitter.

Type-1 FLCs have been used in the past to control players; however, such FLCs
face many sources of uncertainty, which include image processing algorithms (that
cause uncertainties in the FLC inputs) as well as uncertainties in the actuators and
networking resources. Hence, Figueroa et al. (2005) applied an IT2 Mamdani FLC
to this problem and conducted two tests in order to evaluate the performance of the
IT2 Mamdani FLC against its T1 counterpart.

The first test is called a static ball test and is one in which the way a “player”
reaches the position of the ball is observed. During this test, the ball is positioned
at a fixed point, for example, at one of the corners of the ground plane, and a player
starts his movement from another point, usually the farthest corner. Figures 1.18b
and 1.18c depict five static ball tests using the T1 and IT2 Mamdani FLCs, respec-
tively. Observe that for both kinds of controllers the players’ paths are always
different (due to uncertainties); however, for the IT2 Mamdani FLC, the player
only makes two corrections to reach the ball, whereas for the T1 FLC the player
makes three corrections in order to reach the ball. Observe also that the paths fol-
lowed by the T1 player have larger deviations than those of the T2 player, and that
the shapes of those paths varied drastically. On the other hand, the paths followed
by the T2 player were more regular. The control surface for the Mamdani IT2 FLC
(not shown here) indicated that noisy sensors did not produce significant changes
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in a player’s direction; however, for the T1 FLC, small variations in both the error
and change of error produced a considerable change in direction, indicating that
the T1 FLC was vulnerable to noise artefacts.

The second test is called a mobile ball test and is one in which the ball moves
according to a defined trajectory and the player tries to track it. Figueroa et al.
(2005) showed that, in all tests, the IT2 Mamdani FLC preserved a smaller average
distance between the player and the moving ball. Additionally, they showed that the
associated standard deviation was smaller for the IT2 Mamdani FLC than it was for
the T1 FLC, which means that the paths followed by the IT2 player were closer to
the ball’s parabolic trajectory. They concluded, finally, that the IT2 Mamdani FLC
was able to cope with uncertainties in a better way than the T1 FLC counterpart
and also noted that the IT2 Mamdani FLC used a smaller rule base.

1.8.4 Control of Ambient Intelligent Environments

Ambient intelligence (AmI) provides basic criteria for the development of ambient
intelligent environments (AIEs) in which intelligent computation that is enabled
through simple and intuitive interactions with a user is invisibly embedded into
the user’s surrounding environments. The user is, therefore, empowered through a
digital environment that is aware of her/his context and is sensitive, adaptive, and
responsive to her/his needs in an unobtrusive manner.

Ambient intelligent environments rely on ubiquitous computing technologies
that implement modular, low-powered devices and distributed high-bandwidth het-
erogeneous networks of sensors and actuators. They require distributed intelligence
that uses modular units of intelligent behavior, such as intelligent agents, in order to
create a pervasive distributed “layer of intelligence.” Consequently, agents that are
embedded in a user’s environment (e.g., home,work, car, etc.) provide an intelligent
“presence” by being able to recognize the user (or users) and autonomously pro-
gram themselves to the users’ needs by learning from their behaviors. The intelli-
gence mechanisms employed within the agents must have low computational over-
heads, allowing them to be embedded into small hardware platforms or everyday
consumer appliances. It is also important that these intelligent approaches provide
their learned decisions in a form that is easily interpreted and analyzed by the end
users.

One of the main underlying requirements for determining the kind of intelli-
gent approach to use in the embedded agents is the ability to manage short-term
and long-term uncertainties that arise due to changes in the environmental condi-
tions along with changes in user behavior and activities over time. The AIEs face
short-term uncertainties (within short-term time intervals) such as slight noise and
imprecision associated with the inputs of the FLCs, as well as slight mood changes
of the user. The AIEs also face long-term uncertainties because the environmen-
tal conditions and associated user activities change over longer durations of time
due to:

• Seasonal variations in environmental conditions [e.g., external light level (the
difference in the position of the sun can cause a difference between the late
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afternoon light levels in midsummer and the late afternoon light levels in mid-
winter), temperature, time of day (morning, afternoon, or evening)].

• People’s behavior while occupying these environments because their behav-
iors, moods, and activities are dynamic, often nondeterministic and are subject
to change with external factors such as time and season; there is also the fact
that different words mean different things at different times of the year; for
example, the values associated with warm temperature can vary from winter
to summer.

• Changes in an actuator’s characteristics as a result of wear and tear that occurs
over time.

Hagras et al. (2007) describe an agent’s architecture for the control of AIEs that
uses an IT2 Mamdani FLC and a one-pass (noniterative) method to learn the user’s
particular behaviors and preferences in an online nonintrusive and seamless man-
ner. The system learned the user’s behavior by learning his/her particular rules and
T2 membership functions. These rules and membership functions could then be
adapted incrementally in a life-long learning mode to suit the changing environ-
mental conditions and user’s preferences. They developed a T2 agent architecture
suitable for the embedded platforms used in AIEs, which have limited computa-
tional and memory capacities.

The agent based on IT2 Mamdani FLC was evaluated in the Essex Intelligent
Dormitory (iDorm), depicted in Fig. 1.19a. The iDorm is a multiuser inhabited
space that is fitted with a plethora of embedded sensors, actuators, processors, and
heterogeneous networks that are cleverly concealed (buried in the walls and under-
neath furniture) so that the user is unaware of the hidden intelligent infrastructure
of the room. It looks and feels like an ordinary study/bedroom environment, con-
taining a mix of furnishings such as a bed, work desk, and wardrobe, which split
the room into different areas of activity such as sleeping, working, and entertain-
ing. Any networked embedded computer that can run a standard Java process can
directly access and control the devices in the iDorm. The IT2 Mamdani FLC-based
agent was embedded in an Internet Fridge (iFridge) computer.
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Figure 1.19 (a) iDorm and (b) number of accumulated online user adaptations (Hagras
et al., 2007; © 2007, IEEE).
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Experiments were conducted with various users during an extended period
(spanning the course of a year) over which it was possible to evaluate and
demonstrate how the agent could adapt in a life-long learning mode and could
handle short- and long-term uncertainties. The agents based on IT2 Mamdani
FLC were compared with T1-FLC-based agents regarding their ability to model a
user’s behavior while also handling long-term uncertainties. Results demonstrated
that the IT2 FLC was better able to model a user’s behavior and handle the short-
and long-term uncertainties, and it used fewer rules than the T1 FLC.

Further experiments were conducted in the iDorm where user satisfaction was
measured by monitoring how well the agents adjusted the iDorm environment to
the user’s preferences such that user intervention (which can be used as a measure
of a user’s satisfaction) was reduced over time. Figure 1.19b shows, for a two-day
experiment, the number of rules that were adapted online every time the user had to
override the agent’s decision. Observe that agent based on the IT2 Mamdani FLC
required significantly less user interaction than did the T1 agent. The curve for the
T2 agent shows that user intervention initially was high but that it stabilized on
the second day; therefore, the T2 agent only required the very short online tuning
period of approximately one day. This is because the T2 agent better modeled user
behavior and handled the short- and long-term uncertainties better than did the T1
agent. The curve for the T2 agent also shows it to be more stable (i.e., flat and not
increasing with time) than the T1 agent in controlling the environment between the
points when the user had to intervene in the agent’s decisions to adapt the rules,
that is, the curve for the T1 agent shows that user intervention continues to increase
and does not properly stabilize by the end of the second day.

In conclusion, Hagras et al. (2007) show that T2 agents can adapt to user behav-
iors and that they generated fewer rules as compared with T1 agents. Fewer rules
led to faster processing and more efficient memory usage. More specifically, the
T2 agent was able to outperform the T1 agent achieving a 60% increase in process-
ing speed as a result of a 50% reduction in the size of the rule base, thus reducing
memory usage.

1.9 BOOK RATIONALE

Fuzzy control using familiar T1 FSs and logic has been extensively studied and
applied to practical problems since 1974 and is considered a matured field. As men-
tioned above, fuzzy logic control relying on T2 FSs has now gained the attention of
the fuzzy systems community, and the number of publications about it is growing
rapidly.

Because of a lack of basic calculation methods in the early days of T2 FSs and
logic, T2 FLCs have not emerged in popularity until recently. Now, T2 calculations
can be done in real time.

As an emerging field, many different aspects of T2 fuzzy logic control need to be
investigated in order to advance this new and powerful technology. This is the first
book to bring together some of the latest developments on T2 fuzzy logic control
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in one place, so that interested researchers and practitioners can participate in this
field. This book can be used to quickly understand the fundamentals of T2 fuzzy
logic control and the latest theoretical developments about some important aspects
of this new technology.

The central themes of any control methodology, fuzzy or conventional, are anal-
ysis and design. Analysis includes (1) describing the mathematical structure of T2
FLCs, (2) examining the stability of T2 fuzzy logic control systems, and (3) study-
ing the robustness of T2 fuzzy logic control systems. Design means designing a T2
FLC (Mamdani or TSK) to control a given system to achieve user-desired perfor-
mance, including stability. This book focuses on both topics for T2 FLCs and T2
fuzzy logic control systems, and also explains and demonstrates how to apply T2
fuzzy logic control to some important applications.

1.10 SOFTWARE AND HOW IT CAN BE ACCESSED

Software for Examples 4.1 and 4.6 and the examples in Chapter 6 can be accessed
at http://booksupport.wiley.com/, and software for Appendix A, that supports T1,
IT2 and GT2 FLCs, is available at http://juzzy.wagnerweb.net.

1.11 COVERAGE OF THE OTHER CHAPTERS

Chapter 2 provides background materials about IT2 FSs that are used in the rest of
the book. To begin, T1 FSs are reviewed because T2 FSs build upon T1 FSs. Then
a lot of information about interval T2 FSs is covered because this is needed in the
rest of this book. Finally, general T2 FSs are introduced because such sets are the
wave of the future.

Chapter 3 provides short reviews of T1 Mamdani and TSK FLCs so as to set the
stage for the complete descriptions of IT2 Mamdani and TSK FLCs. These impor-
tant IT2 FLCs are then developed in great detail, but using only T1 mathematics.
The Wu–Mendel uncertainty bounds, which have let IT2 Mamdani FLCs run in
real time, are stated; however, their derivations are included in Appendix 3A for
completeness. Finally, some design methods for IT2 FLCs are described.

Chapter 4 describes techniques for rigorously deriving the precise mathematical
relationships between the input and output of a variety of IT2 Mamdani and TSK
FLCs. This is a relatively young area that started a few years ago. Some of the T2
FLCs are of the PI or PD type, and their derived relationships reveal them to be non-
linear variable PI or PD controllers that have variable proportional gain and integral
gain (or derivative gain) plus variable control offset. Since many T1 fuzzy PI and
PD controllers are already known to possess such structures, the structural char-
acteristics of the T2 fuzzy PI controller can be (and are) compared to those of the
corresponding T1 fuzzy PI controller. This chapter uses the derived relationships
and structure characteristics analyses for insightfully understanding and studying
the T2 FLCs and for developing their design guidelines.

http://booksupport.wiley.com
http://juzzy.wagnerweb.net
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Chapter 5 also focuses on the properties of IT2 proportional plus derivative (PD)
and proportional plus integral (PI) FLCs. First, a class of IT2 PD/PI FLCs that
has lower computational requirements, but still retains the properties previewed in
Section 1.7, is introduced. The key idea is to only replace some critical T1 FSs
by T2 FSs. Experimental results are presented that demonstrate the proposed sim-
plified T2 FLC has the potential to be as robust as a conventional T2 FLC, while
lowering the computational cost. Next, a methodology is presented, which is use-
ful for theoretical studies, for deriving the analytical structure of IT2 PI/PD FLCs
that have a symmetrical rule base. The methodology extends the analytical struc-
ture technique for T1 FLCs by leveraging a property of the Karnik–Mendel (KM)
type reducer (which is derived and explained in Chapter 2) that constrains switch
points to the locations of the consequent sets. Finally, examples are presented that
illustrate how this framework may be applied to analyze IT2 FLCs.

Chapter 6 focuses on IT2 TSK FLCs. Its approach is based on rigorous math-
ematical analyses for both FLC analysis and design. It includes stability analysis
and systematic methodologies for the design of adaptive and robust control, and
introduces and provides some design approaches for practical control designs of
such FLCs. Finally it includes several examples as well as an industrial application
for modular and reconfigurable robotic systems.

Chapter 7 examines the future for T2 FLCs. Each of its sections has been written
by one or more of the authors of this book and has a futuristic flavor.



CHAPTER 2

Introduction to Type-2 Fuzzy Sets

2.1 INTRODUCTION

This chapter provides background materials about type-2 fuzzy sets (T2 FSs) that
are used in the rest of the book. To begin, a review of type-1 fuzzy sets (T1 FSs) is
given in Section 2.2 because T2 FSs build upon T1 FSs. Then a lot of information
about interval type-2 fuzzy sets (IT2 FSs) is given in Section 2.3 because this is
needed in the rest of this book. Finally, an introduction to general type-2 fuzzy sets
(GT2 FSs) is given in Section 2.4 because such sets are the wave of the future.

2.2 BRIEF REVIEW OF TYPE-1 FUZZY SETS1

Before discussions are given about T2 FSs, a short review is provided about T1
FSs. Doing this lets us establish common notations and definitions for T1 FSs.

2.2.1 Some Definitions

Definition 2.1 An FS (in this book called a T1 FS) A is comprised of a domain
X of the real numbers (also called the universe of discourse of A) together with a
membership function (MF) 𝜇A : X→ [0, 1]. For each x∈X, the value of 𝜇A(x) is the
degree of membership, or membership grade, of x in A. If 𝜇A(x)= 1 or 𝜇A(x)= 0 for
∀ x∈X, then the FS A is said to be a crisp set.

Recall that a crisp set A can be described by listing all of its members, or by
identifying the elements that are in A by specifying a condition or conditions that
the elements must satisfy, or by using a zero–one MF (also called characteristic
function, discrimination function, or indicator function) for A. On the other hand,
a T1 FS can only be described by its MF; hence, the T1 FS A and its MF 𝜇A(x) are
synonyms and are therefore used interchangeably, that is, A⇐⇒𝜇A(x).

1Much of the material in this section is taken directly from Mendel and Wu (2010, Chapter 2; © 2010,

IEEE).

Introduction to Type-2 Fuzzy Logic Control: Theory and Applications, First Edition.

Jerry M. Mendel, Hani Hagras, Woei-Wan Tan, William W. Melek, and Hao Ying.

© 2014 by The Institute of Electrical and Electronics Engineers, Inc. Published 2014 by John Wiley & Sons, Inc.

32



BRIEF REVIEW OF TYPE-1 FUZZY SETS 33

When X is continuous (e.g., the real numbers), A is written as

A = ∫X
𝜇A(x)∕x (2.1)

In this equation, the integral sign does not denote integration; it denotes the col-

lection of all points x∈X with associated MF 𝜇A(x). When X is discrete (e.g., the
integers), it is denoted Xd, and A is written as

A =
∑
Xd

𝜇A(x)∕x (2.2)

In this equation, the summation sign does not denote arithmetic addition; it denotes

the collection of all points x∈Xd with associated MF 𝜇A(x); hence, it denotes the
set-theoretic operation of union. The slash in Eqs. (2.1) and (2.2) associates the
elements in X or Xd with their membership grades, where 𝜇A(x)> 0.

Sometimes a T1 FS may depend on more than a single variable in which case
its MF is multivariate, for example, if the T1 FS B depends on two variables,
x1 and x2, where x1 ∈X1 and x2 ∈X2, then, in general, its MF is 𝜇B(x1, x2) for
∀ (x1, x2)∈X1 ×X2. This MF is three dimensional and can be quite complicated
to establish. For more than two variables, it may be quite hopeless to establish a
multivariate MF.

In this book all multivariate MFs are assumed to be separable, that is, 𝜇B(x1, x2)
is expressed directly in terms of the univariate MFs 𝜇B(x1) and 𝜇B(x2), as

𝜇B(x1, x2) = min{𝜇B(x1), 𝜇B(x2)} ∀(x1, x2) ∈ X1 × X2 (2.3)

Definition 2.2 The support of a T1 FS A is the crisp set of all points x∈X such
that 𝜇A(x)> 0. A T1 FS whose support is a single point in X with 𝜇A(x)= 1 is called
a (type-1) fuzzy singleton.

Definition 2.3 The height of a T1 FS is its maximum MF value. A normal T1 FS
is one for which supx∈X 𝜇A(x)= 1, that is, its height equals 1.

Definition 2.4 A T1 FS A is convex if and only if 𝜇A(𝜆x1+ (1− 𝜆)x2)≥min[𝜇A
(x1),𝜇A(x2)] where x1, x2 ∈X and 𝜆∈ [0, 1] (Klir and Yuan, 1995).

This can be interpreted as (Lin and Lee, 1996): Take any two elements x1 and
x2 in FS A; then the membership grade of all points between x1 and x2 must be
greater than or equal to the minimum of 𝜇A(x1) and 𝜇A(x2). This will always occur
when the MF of A is first monotonically nondecreasing and then monotonically
nonincreasing.

The most commonly used shapes for MFs are triangular, trapezoidal, piecewise
linear, Gaussian, and bell.
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0 1 7 11 25
x

1

S = A S = B

𝜇s(x)

Figure 2.1 Examples of two T1 FSs, A and B (Mendel and Wu, 2010; © 2010, IEEE).

Example 2.1 Examples of triangle and trapezoidal MFs are depicted in Fig. 2.1.
Observe that both of the T1 FSs are normal and convex, the support of T1 FS A is
(1, 11), the support ofT1 FS B is (7, 25), and for x∈ (7, 11) x resides simultaneously
in both A and B but with different grades of membership.

In general, MFs can either be chosen arbitrarily, based on the preference of an
individual (hence, the MFs for two individuals could be quite different depend-
ing upon their experiences, perspectives, cultures, etc.), or they can be designed
using optimization procedures (e.g., Horikawa et al., 1992; Jang, 1992; Wang and
Mendel, 1992a, 1992b). Much more will be said about how to choose MFs in other
chapters of this book.

Definition 2.5 If a variable can take words in natural languages as its values, it
is called a linguistic variable, where the words are characterized by FSs defined in
the universe of discourse in which the variable is defined (Wang, 1997).

Let v denote the name of a linguistic variable (e.g., temperature, pressure, accel-
eration). Numerical (measured) values of a linguistic variable v are denoted x,where
x∈X. A linguistic variable is usually decomposed into a set of terms, T, which
cover its universe of discourse. This decomposition is based on syntactic rules (a
grammar) for generating the terms. Examples of terms for temperature (pressure or
acceleration) are very low, low, moderate, high, and very high. Each of the terms is
treated as an FS and is modeled by an MF.

A more formal definition of a linguistic variable, due to Zadeh (1973, 1975),
taken from Klir and Yuan (1995), follows.

Definition 2.5′ Each linguistic variable is fully characterized by a quintuple
(v, T,X, g,m) in which v is the name of the variable, T is the set of linguistic terms
of v that refer to a base variable whose values range over the universal set X, g
is a syntactic rule for generating linguistic terms, and m is a semantic rule that
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assigns to each linguistic term t∈ T its meaning, m(t), which is an FS on X, that is,
m : T→F(X), where F(X) denotes the set of all ordinary (i.e., T1) FSs of X, one
such set for each t∈ T.

2.2.2 Set-Theoretic Operations

Just as crisp sets can be combined using the union and intersection operations, so
can T1 FSs; and, just as a crisp set can be complemented, so can a T1 FS.

Let T1 FSs A and B be two subsets of X that are described by their MFs 𝜇A(x)
and 𝜇B(x). The union of A and B is described by the MF 𝜇A∪B(x), where

𝜇A∪B(x) = max[𝜇A(x), 𝜇B(x)] ∀x ∈ X (2.4)

The intersection of A and B is described by the MF 𝜇A∩B(x), where

𝜇A∩B(x) = min[𝜇A(x), 𝜇B(x)] ∀x ∈ X (2.5)

The complement of A is described by the MF 𝜇Ac (x) [also denoted 𝜇A′ (x) or 𝜇A(x)],
where

𝜇Ac(x) = 1 − 𝜇A(x) ∀x ∈ X (2.6)

Although 𝜇A∪B(x) and 𝜇A∩B(x) can be described more generally by using
t-conorms and t-norms (e.g., Klir and Yuan, 1995), in this book only the maximum
t-conorm is used in Eq. (2.4), and either the minimum or product t-norm is used in
Eq. (2.5) because those are the ones used in fuzzy logic control.

Example 2.2 The union and intersection of the two TI FSs A and B that are
depicted in Fig. 2.1, as computed using Eqs. (2.4) and (2.5), are shown in Figs. 2.2a
and 2.2b, respectively.

(a)

0 1 7 11 25

1

S = A S = B

0 1 7 11 25

1

S = A S = B

(b)

𝜇s(x)

𝜇A∪B (x)

𝜇s(x)

𝜇A∩B (x)

x x

Figure 2.2 (a) Union and (b) intersection of the two T1 FSs A and B that are depicted in
Fig. 2.1 (Mendel and Wu, 2010; © 2010, IEEE).
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x
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Figure 2.3 Trapezoidal T1 FS and an 𝛼-cut (Mendel and Wu, 2010; © 2010, IEEE).

2.2.3 Alpha cuts

Definition 2.6 The 𝛼-cut of T1 FS A, denoted A(𝛼), is an interval of real numbers,
defined as

A(𝛼) = {x|𝜇A(x) ≥ 𝛼} (2.7)

where 𝛼 ∈ [0, 1] (Klir and Yuan, 1995).

Example 2.3 An example of an 𝛼-cut is depicted in Fig. 2.3, and in this example,
A(𝛼)= [1.9, 5.5]. Observe that the 𝛼-cut lies on the x axis.

Example 2.4 Given a specific A, it is easy to obtain formulas for the end points
of the 𝛼-cut, for example, see Table 2.1. In order to obtain these formulas, such as
the ones for the triangular distribution, solve the two equations l(x)= 𝛼 for the left
end point and r(x)= 𝛼 for the right end point of A(𝛼).

One of the major roles of 𝛼-cuts is their capability to represent a T1 FS. In order
to do this, first the following indicator function is introduced:

IA(𝛼)(x) =

{
1 ∀x ∈ A (𝛼)
0 ∀x ∉ A(𝛼)

(2.8)

Associated with IA(𝛼)(x) is the following square-well function:

𝜇A(x|𝛼) ≡ 𝛼IA(𝛼)(x) = 𝛼∕A(𝛼) (2.9)

This function, an example of which is depicted in Fig. 2.4, raises the 𝛼-cut A(𝛼) off
of the x axis to height 𝛼.
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TABLE 2.1 Examples of T1 FSs and Their 𝜶-cut Formulas

T1 FS 𝛼-cut Formula

1

𝛼

𝜇A (x)

A

l (x) r (x)

m − a m + bm
x

A(𝛼)= [m− a(1− 𝛼),m+ b(1− 𝛼)]

1

𝛼

𝜇A (x)

A

l (x) r(x)

m1 − a m2 + bm1 m2

x

A(𝛼)= [m1 − a(1− 𝛼),m2 + b(1− 𝛼)]

Source: Mendel and Wu (2010; © 2010, IEEE).
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1

𝛼

𝜇A (x)

𝜇A (x�𝛼)

x

Figure 2.4 Square-well function 𝜇A(x|𝛼) (Mendel and Wu, 2010; © 2010, IEEE).

THEOREM 2.1 (Decomposition Theorem) A T1 FS A can be represented as

𝜇A(x) =
⋃

𝛼∈[0,1]
𝜇A(x|𝛼) = sup

𝛼∈[0,1]
{𝜇A(x|𝛼)} ∀x ∈ X (2.10)

where
⋃

is the fuzzy union and 𝜇A(x|𝛼) is defined in Eq. (2.9) (Klir and Yuan,
1995).
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This theorem is called a decomposition theorem because A is decomposed into
a collection of square-well functions that are then aggregated using the union oper-
ation. Note that greater resolution is obtained by including more 𝛼-cuts, and the
calculation of new 𝛼-cuts does not affect previously calculated 𝛼-cuts.

Example 2.5 Let A= 0.2/x1 + 0.4/x2 + 0.6/x3 + 0.8/x4 + 1/x5. Some indicator
functions for A are

IA(0.2)(x) = 1∕x1 + 1∕x2 + 1∕x3 + 1∕x4 + 1∕x5

IA(0.4)(x) = 0∕x1 + 1∕x2 + 1∕x3 + 1∕x4 + 1∕x5

IA(0.6)(x) = 0∕x1 + 0∕x2 + 1∕x3 + 1∕x4 + 1∕x5 (2.11)

IA(0.8)(x) = 0∕x1 + 0∕x2 + 0∕x3 + 1∕x4 + 1∕x5

IA(1.0)(x) = 0∕x1 + 0∕x2 + 0∕x3 + 0∕x4 + 1∕x5

Their associated square-well functions are

𝜇A(x|0.2) =0.2∕x1 + 0.2∕x2 + 0.2∕x3 + 0.2∕x4 + 0.2∕x5

𝜇A(x|0.4) =0∕x1 + 0.4∕x2 + 0.4∕x3 + 0.4∕x4 + 0.4∕x5

𝜇A(x|0.6) =0∕x1 + 0∕x2 + 0.6∕x3 + 0.6∕x4 + 0.6∕x5 (2.12)

𝜇A(x|0.8) =0∕x1 + 0∕x2 + 0∕x3 + 0.8∕x4 + 0.8∕x5

𝜇A(x|1.0) =0∕x1 + 0∕x2 + 0∕x3 + 0∕x4 + 1∕x5

Applying Eq. (2.10) to these functions, it follows that

A = 𝜇A(x|0.2) ∪ 𝜇A(x|0.4) ∪ 𝜇A(x|0.6) ∪ 𝜇A(x|0.8) ∪ 𝜇A(x|1.0) (2.13)

When performing these unions, we focus on a specific domain point, for example,
x= x4, for which

𝜇A(x4) = max(0, 0.2, 0.4, 0.6, 0.8)∕x4 = 0.8∕x4 (2.14)

Performing these unions for the five domain points, whose MFs are nonzero, it is
straightforward to recover A= 0.2/x1 + 0.4/x2 + 0.6/x3 + 0.8/x4 + 1/x5.
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The following properties hold for 𝛼-cuts:

(A ∪ B)(𝛼) = A(𝛼) ∪ B(𝛼)

(A ∩ B)(𝛼) = A(𝛼) ∩ B(𝛼) (2.15)

(A ∗ B)(𝛼) = A(𝛼) ∗ B(𝛼)

where * can be any of the four basic arithmetic operations—addition, subtraction,
multiplication, and division. So the 𝛼-cut of the union equals the union of the 𝛼-cuts,
and an equivalent property holds for the intersection as well as for arithmetic oper-
ations.

2.2.4 Compositions of T1 FSs

Consider the composition of fuzzy relations from different Cartesian product
spaces that share a common set, namely R(U,V) and S(V,W), for example,
pressure x is lower than pressure y, and pressure y is close to pressure z. Associated
with fuzzy relation R is its membership function 𝜇R(x, y), where 𝜇R(x, y)∈ [0, 1],
and associated with fuzzy relation S is its membership function 𝜇S(y, z), where
𝜇S(y, z)∈ [0, 1]. The fuzzy composition of R and S, denoted R ∘ S, whose MF is
denoted 𝜇R ∘ S(x, z), is given by the following sup-star composition of R and S (e.g.,
Wang, 1997):

𝜇R∘S(x, z) = sup
y∈Y

[𝜇R(x, y) ⋆ 𝜇S(y, z)] ∀x ∈ X, z ∈ Z (2.16)

When X, Y, and Z are discrete universes of discourse, then the supremum operation
is the maximum. The most commonly used sup-star compositions are the sup-min
and sup-product.

Suppose the fuzzy relation R is just a fuzzy set, in which case V=U, so that
𝜇R(x, y) just becomes 𝜇R(x) [or, equivalently, 𝜇R(y)], for example, “pressure y is
very high and pressure y is lower than pressure z.” In this case, the sup-star com-
position in Eq. (2.16) simplifies because Y=X, that is,

sup
y∈Y

[𝜇R(x, y) ⋆ 𝜇S(y, z)] = sup
x∈X

[𝜇R(x) ⋆ 𝜇S(x, z)] ∀z ∈ Z (2.17)

which is only a function of output variable z; hence, the notation 𝜇R ∘ S(x, z) can be
simplified to 𝜇R ∘ S(z), so that when R is just a fuzzy set,

𝜇R∘S(z) = sup
x∈X

[𝜇R(x) ⋆ 𝜇S(x, z)] ∀z ∈ Z (2.18)

Equation (2.18) plays the key role in obtaining the MF of a rule output.
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2.2.5 Rules and Their MFs

A rule is the following if–then statement: “If x is A, then u is B,” where x∈X and
u∈U. It has a membership function 𝜇A→B(x, u) where 𝜇A→B(x, u)∈ [0, 1]. Note
that 𝜇A→B(x, u) measures the degree of truth of the implication relation between x
and u, and it resides in the Cartesian product space X×U. An example of such a
membership function is2

𝜇A→B(x, u) = 1 −min[𝜇A(x), 1 − 𝜇B(u)] (2.19)

In crisp logic, modus ponens is used as the inference rule, namely:

Premise: x is A.

Implication: If x is A, then u is B.

Consequent: u is B.

Modus ponens is associated with the implication “A implies B” (A→B). In terms
of propositions p and q, modus ponens is expressed as (p∧ (p→ q))→ q.

In fuzzy logic, modus ponens is extended to generalized modus ponens, namely:

Premise: x is A*.
Implication: If x is A, then u is B.
Consequent: u is B*.

In crisp logic a rule will be fired only if the premise is exactly the same as the
antecedent of the rule, and the result of such rule firing is the rule’s actual conse-
quent. In FL, on the other hand, a rule is fired so long as there is a nonzero degree
of similarity between the premise and the antecedent of the rule, and the result of
such rule firing is a consequent that has a nonzero degree of similarity to the rule’s
consequent.

Generalized modus ponens is a fuzzy composition where the first fuzzy relation
is merely the fuzzy set A*. Consequently, using Eq. (2.18), 𝜇B∗ (u) is obtained from
the following sup-star composition:

𝜇B∗ (u) = sup
x∈X

[𝜇A∗ (x) ⋆ 𝜇A→B(x, u)] ∀u ∈ U (2.20)

This equation simplifies a lot when A* is a fuzzy singleton, that is,

𝜇A∗ (x) =

{
1 x = x′

0 x ≠ x′ and ∀x ∈ X
(2.21)

This is called singleton fuzzification, and for it Eq. (2.20) becomes

2A proof that Eq. (2.19) gives correct results for material implication and crisp sets can be found in, for

example, Mendel (1995) or Mendel (2001, Chapter 1).
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𝜇B∗ (u) = sup
x∈X

[𝜇A∗ (x) ⋆ 𝜇A→B(x, u)]

= sup[𝜇A→B(x′, u), 0] = 𝜇A→B(x′, u) ∀u ∈ U (2.22)

regardless of whether one uses minimum or product for ⋆. Observe that for the
singleton fuzzifier the supremum operation in Eq. (2.20) is very easy to evaluate
because 𝜇A∗ (x) is nonzero at only one point, x′.

Example 2.6 The two most popular implication MFs for fuzzy logic control are
the following minimum and product implications, also known as Mamdani (1974)
and Larsen (1980) implications, respectively, ormany times just asMamdani impli-
cations:

𝜇A→B(x, u) ≡ min[𝜇A(x), 𝜇B(u)] (2.23)

𝜇A→B(x, u) ≡ 𝜇A(x)𝜇B(u) (2.24)

These implications have nothing to do with the material implication from propo-
sitional logic; hence, they are sometimes referred to as engineering implications
(Mendel, 1995).

Figures 2.5 and 2.6 illustrate 𝜇B∗ (u) in Eq. (2.22) for Eqs. (2.23) and
(2.24), respectively, that is, when 𝜇B∗ (u) = min[𝜇A(x′), 𝜇B(u)], ∀ u∈U, and
𝜇B∗ (u) = 𝜇A(x′)𝜇B(u), ∀ u∈U. In these figures, the level shown for 𝜇A(x′) was
chosen arbitrarily. Observe, in Fig. 2.5, that given a specific antecedent x= x′ the
result of firing a specific rule is a T1 FS whose support is finite and whose shape
is a clipped version of 𝜇B(u). On the other hand, in Fig. 2.6, the result of firing
a specific rule is a T1 FS whose support is finite but whose shape is a scaled
(attenuated) version of 𝜇B(u).

So far, all of our discussions about rules have been for rules with single
antecedents and consequents, for example, if x is A, then u is B. In Sections 2.4 and
2.5 and in later chapters, we characterize rules that have more than one antecedent,
for example,

1

u u

𝜇B (u) 𝜇B (u)

𝜇A (x′)

1

(a) (b)

Figure 2.5 Construction of 𝜇B∗ (u) = min[𝜇A(x′), 𝜇B(u)]: (a) Consequent MF 𝜇B(u) and
(b) construction of 𝜇B∗ (u) (Mendel, 1995; © 1995, IEEE).
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1

u u

𝜇B (u) 𝜇B (u)

𝜇A (x′)

1

(a) (b)

Figure 2.6 Construction of 𝜇B∗ (u) = 𝜇A(x′)𝜇B(u): (a) Consequent MF 𝜇B(u) and
(b) construction of 𝜇B∗ (u) (Mendel, 1995; © 1995, IEEE).

If x1 is F1 and x2 is F2 and … and xp is Fp, then u is G.

In such a multiple-antecedent rule, x1 ∈X1, … , xp ∈Xp, u∈U, and F1, … ,Fp and
G areT1 FSs. If a rule with the same antecedents has L consequents, that is, a MIMO
(multiple-input multiple-output) rule, then it can always be decomposed into L
MISO (multiple-input single-output) rules, each having the same antecedent(s) but
with only one consequent.

2.3 INTERVAL TYPE-2 FUZZY SETS

2.3.1 Introduction3

Imagine blurring4 the T1 MF depicted in Fig. 2.7a by shifting the points on the
triangle either to the left or to the right and not necessarily by the same amounts, as
in Fig. 2.7b. Then, at a specific value of x, say x′, there no longer is a single value

(a)

0 0

u

𝜇A (x)

u

x x
x′ x′

u′

1 1

(b)

Figure 2.7 (a) T1 MF and (b) blurred T1 MF (Mendel et al., 2006; © 2006, IEEE).

3The material in this section is taken from Mendel et al. (2006; © 2006, IEEE).
4We are only using the idea of “blurring” as a pedagogical way to introduce a T2 FS. There are many

other ways to create such an FS.
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for the MF; instead, the MF takes on values wherever the vertical line intersects
the blur. Those values need not all be weighted the same; hence, we can assign an
amplitude distribution to all of those points. Doing this for all x∈X, we create a
three-dimensional MF—a T2 MF—that characterizes a T2 FS.

2.3.2 Definitions5

Definition 2.7 A T2 FS [also called a GT2 FS], denoted Ã, is a bivariate function
(Aisbett et al. 2010) on the Cartesian product 𝜇 : X× [0, 1] into [0, 1], where X is
the universe for the primary variable of Ã, x. The 3D MF of Ã is usually denoted
𝜇Ã(x, u), where x∈X and u∈U= [0, 1], that is,

Ã =
{(

(x, u) , 𝜇Ã(x, u)
) |∀x ∈ X, ∀u ∈ [0, 1]

}
(2.25)

in which 0 ≤ 𝜇Ã(x, u) ≤ 1. Ã can also be expressed as

Ã = ∫x∈X∫u∈[0,1]
𝜇Ã(x, u)∕(x, u) (2.26)

where ∫∫ denotes union6 over all admissible x and u. For discrete universes
of discourse ∫ is replaced by

∑
, and X and U by Xd and Ud.

In Definition 2.7, the first restriction that ∀ u∈ [0, 1] is consistent with the T1
constraint that 0≤𝜇A(x)≤ 1, that is, when uncertainties disappear, a T2 MF must
reduce to aT1 MF, in which case the variable u equals7 𝜇A(x) and 0≤𝜇A(x)≤ 1.The
second restriction that 0 ≤ 𝜇Ã(x, u) ≤ 1 is consistent with the fact that the ampli-
tudes of an MF should lie between or be equal to 0 and 1.

In Eqs. (2.25) and (2.26) u is called the secondary variable and has domain
U= [0, 1] at each x∈X.

Note: For a T2 FS, symbol u is widely used in the T2 literature as the variable
label for the primary MF, so we are using this notation here as well. For control,
symbol u, which denotes the control law, is always a function and will be shown
as such, for example, as u(t), where t is time; or u(x) or u(x(t)), where x is a state
vector; or, u(e(t), ė(t)) or u(e) or u(e(t)), where e is error, and so forth.

Definition 2.8 When 𝜇Ã(x, u) = 1 for ∀ x∈X and ∀ u∈U, then Ã is called an
interval T2 FS (IT2 FS).

5Much of the material in this section is taken from Mendel et al. (2006; © 2006, IEEE).
6Recall that the union of two sets A and B is by definition another set that contains the elements in either

A or B. When we view each element of a T2 FS as a subset, then the unions in Eq. (2.26) conform to

the classical definition of union, since each element of that set is distinct. At a specific value of x and u
only one term is activated in the union.
7In this case, the third dimension disappears.
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Although the third dimension of the GT2 FS is no longer needed because it
conveys no new information about the IT2 FS, the IT2 FS can still be expressed as
a special case of the GT2 FS in Eq. (2.26) as

Ã = ∫x∈X∫u∈[0,1]
1∕(x, u) (2.27)

In the rest of this section we will only be interested in IT2 FSs (we return to a
GT2 FS in Section 2.7). Note, however, that in order to introduce the remaining
widely used terminology of a GT2 FS we temporarily continue to retain the third
dimension for an IT2 FS.

Definition 2.9 At each value of x, say x= x′, the 2D plane whose axes are u and
𝜇Ã(x′, u) is called a vertical slice of 𝜇Ã(x, u). A secondary MF is a vertical slice of
𝜇Ã(x, u). It is 𝜇Ã(x = x′, u) for x′ ∈X and ∀ u∈ [0, 1], that is,

𝜇Ã(x = x′, u) ≡ 𝜇Ã(x′) = ∫u∈Ju
x′
⊆[0,1]

1∕u (2.28)

where Ju
x′ is the subset of U that is the support of 𝜇Ã(x′) and is called the pri-

mary membership of Ã. The amplitude of the secondary MF is called the secondary
grade. The secondary grades of an IT2 FS are all equal to 1. Because ∀ x′ ∈X, we
drop the prime notation on 𝜇Ã(x′) and refer to 𝜇Ã(x) as8 a secondary MF; it is the
MF of a T1 FS, which we also refer to as a secondary set, Ã(x).

Example 2.7 The IT2 MF that is depicted in Fig. 2.8 has five vertical slices asso-
ciated with it. The one at x= 2 is depicted in Fig. 2.9. The secondary MF at x= 2 is
𝜇Ã(2) = 1∕0 + 1∕0.2 + 1∕0.4 + 1∕0.6 + 1∕0.8, whereas the secondary MF at x= 3
(Fig. 2.8) is 𝜇Ã(3) = 1∕0.6 + 1∕0.8.

Based on the concept of secondary sets, an IT2 FS can be reinterpreted as the
union (see footnote 6) of all secondary sets, that is, using Eq. (2.28) in Eqs. (2.25)
and (2.26), respectively, Ã can be re-expressed in a vertical-slice manner as

Ã = {(x, 𝜇Ã(x))|∀x ∈ X} (2.29)

or, alternatively as

Ã = ∫x∈X
𝜇Ã(x)∕x =∫x∈X

[
∫u∈Ju

x

1∕u

]/
x Ju

x ⊆ [0, 1] (2.30)

8𝜇Ã(x) is actually a function of secondary variable u; hence, a better notation for it is either 𝜇Ã(u|x)
or 𝜇Ã(x)(u). Because the notation 𝜇Ã(x) is already widely used by the T2 FS community, it is not

changed here.
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1

1

0.6

0.4

0.8

0.2

u

𝜇Ã (x, u)

x

J1 J2 J3 J4 J5

3 5

Figure 2.8 Example of an IT2 MF for discrete universes of discourse. The shaded area in
the x–u plane is the FOU (Definition 2.10) (Mendel et al., 2006; © 2006, IEEE).

1

1

0

1

53

0.6

0.4

0.8

0.2

u

x

J1 J2 J3 J4 J5

𝜇Ã (x, u)

Figure 2.9 Example of a vertical slice for the IT2 MF depicted in Fig. 2.8 (Mendel et al.,
2006; © 2006, IEEE).

If X and Ju
x are both discrete (either by problem formulation—as in Example

2.7—or by discretization of continuous universes of discourse), then the rightmost
part of Eq. (2.30) can be expressed as
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Ã=
∑
x∈X

[∑
u∈Ju

x

1∕u

]/
x=

N∑
i=1

⎡⎢⎢⎣
∑
u∈Ju

xi

1∕u
⎤⎥⎥⎦
/

xi =

[
M1∑
k=1

1∕u1k

]/
x1+· · ·+

[
MN∑
k=1

1∕uNk

]/
xN

(2.31)

In Eq. (2.31)+ also denotes union. Observe that x has been discretized into N values
and at each of these values u has been discretized into Mi values. The discretization
along each uik does not have to be the same,which iswhy we have shown a different
upper sum for each of the bracketed terms; however, if the discretization of each
uik is the same, then M1 =M2 = · · · =MN ≡M.

Example 2.8 In Fig. 2.8, the union of the five secondary MFs at x= 1, 2, … , 5 is
𝜇Ã(x, u). Observe that the primary memberships are

J1 = J2 = J4 = J5 = {0, 0.2, 0.4, 0.6, 0.8} and J3 = {0.6, 0.8}

and we have only included values in J3 for which 𝜇Ã(x, u) ≠ 0. Each of the spikes
in Fig. 2.8 represents 𝜇Ã(x, u) at a specific (x, u) pair, and its amplitude of 1 is the
secondary grade.

Definition 2.10 Uncertainty in the primary memberships of an IT2 FS, Ã, con-
sists of a bounded region that is called the footprint of uncertainty (FOU). It is the
two-dimensional support of Ã, that is (Aisbett et al., 2010),

FOU(Ã) = {(x, u) ∈ X × U|𝜇Ã(x, u) > 0} (2.32)

FOU(Ã) can also be expressed as the union of all primary memberships, that is,

FOU(Ã) =
⋃
x∈X

Ju
x (2.33)

This is a vertical-slice representation of the FOU, because each of the primary
memberships is the support of a vertical slice.

The shaded region on the x–u plane in Fig. 2.8 is an artistic rendition of the
FOU.9 Because the secondary grades of an IT2 FS convey no new information, the
FOU is a complete description of an IT2 FS. The uniformly shaded FOU of an IT2
FS denotes that there is a uniform distribution that sits on top of it. The uniformly
blurred T1 FS in Fig. 2.7b, where x∈X and u∈U, is another example of the FOU
of an IT2 FS.

9Strictly speaking, the FOU for discrete universes on Xd ×Ud is just a collection of points [called a

domain of uncertainty by Mendel and John (2002b)]. Artistic liberties have been taken in Fig 2.8 by

calling the shaded region the FOU. If Xd was X and Ud was U, then the shaded region would indeed be

the FOU.
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1

Embedded FS

0

0.5

u

x

UMF (Ã)

FOU (Ã) FOU (Ã)

LMF (Ã)

UMF (Ã)

Figure 2.10 FOU (shaded), LMF (dashed), UMF (solid) and an embedded FS (wavy
curve) for the IT2 FS Ã (Mendel et al., 2006; © 2006, IEEE).

Definition 2.11 The upper membership function (UMF) and lower membership
function (LMF) of Ã are two T1 MFs that bound FOU(Ã) (e.g., see Fig. 2.10).
The UMF is associated with the upper bound of FOU(Ã) and is denoted 𝜇Ã(x) [or
UMF(Ã)], ∀ x∈X, and the LMF is associated with the lower bound of FOU(Ã) and
is denoted 𝜇

Ã
[or LMF(Ã)],∀ x∈X, that is (Aisbett et al., 2010),

𝜇Ã(x) =UMF(Ã) = sup{u|u ∈ [0, 1], 𝜇Ã(x, u) > 0} ∀x ∈ X (2.34a)

𝜇
Ã
(x) =LMF(Ã) = inf{u|u ∈ [0, 1], 𝜇Ã(x, u) > 0} ∀x ∈ X (2.34b)

Note, also, that Ju
x can be expressed as

Ju
x = {(x, u) ∶ ∀u ∈ [LMF(Ã),UMF(Ã)]} (2.35)

Definition 2.12 The support of LMF(Ã) [UMF(Ã)] is the crisp set of all points
x∈X such that LMF(Ã) > 0 [UMF(Ã) > 0]. The support of Ã is the same as the
support of UMF(Ã).

Definition 2.13 IT2 FS Ã is convex if both LMF(Ã) and UMF(Ã), which are T1
FSs, are convex over their respective supports (Definition 2.4).

In general, the supports of LMF(Ã) and UMF(Ã) are different, and the support
of LMF(Ã) is contained within the support of UMF(Ã).

Definition 2.14 For discrete universes of discourse Xd and Ud, an embedded IT2
FS Ãe has N elements, where Ãe contains exactly one element from Ju

x1
, Ju

x2
,… , and

Ju
xN
, namely u1, u2,… , uN, each with a secondary grade equal to 1, that is,

Ãe =
N∑

i=1

[1∕ui]∕xi ui ∈ Ju
xi
⊆ Ud = {0, … , 1} (2.36)
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u

Figure 2.11 Example of an embedded IT2 FS associated with the IT2 MF depicted in
Fig. 2.8 (Mendel et al., 2006; © 2006, IEEE).

Set Ãe is embedded in Ã, and, there are a total10 of
∏N

i=1 Mi Ãe.

Example 2.9 An example of an embedded IT2 FS is depicted in Fig. 2.10; it is
the wavy curve for which its secondary grades (not shown) are all equal to 1. Other
examples of Ãe are 1∕𝜇Ã(x) and 1∕𝜇

Ã
(x), ∀ x∈X, where it is understood that in this

notation the secondary grade equals 1 at all values of 𝜇Ã(x) and 𝜇
Ã
(x). Figure 2.11

depicts one of the possible 54 × 2= 1250 embedded IT2 FSs for the T2 MF that is
depicted in Fig. 2.8.

Definition 2.15 For discrete universes of discourse Xd and Ud, an embedded T1 FS
Ae has N elements, one each from Ju

x1
, Ju

x2
,… , and Ju

xN
, namely u1, u2,… , uN, that is,

Ae =
N∑

i=1

ui∕xi ui ∈ Ju
xi
⊆ Ud = {0, … , 1} (2.37)

Set Ae is the union of all the primary memberships of set Ãe in Eq. (2.36), and, there

are a total of
∏N

i=1 Mi Ae. Note that Ae acts as the domain for Ãe.

10For a continuous IT2 FS, although there are an uncountable infinite number of embedded IT2 FSs,

the concept of an embedded IT2 FS [as well as of an embedded T1 FS (Definition 2.15)] is still a

theoretically useful one.
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Example 2.10 An example of an embedded T1 FS is depicted in Fig. 2.10;
it is the wavy curve. Note that embedded T1 FSs do not have to be convex or
normal. For the FOU shown in Fig. 2.10, they will all be normal because they
must all include the upper vertex of both the LMF and UMF, both of which
occur at (1, 1). Other examples of Ae are 𝜇Ã(x) and 𝜇

Ã
(x), ∀ x∈X. Observe, in

Fig. 2.11, that the embedded T1 FS that is associated with the embedded IT2 FS
is Ae = 0.6/1+ 0.4/2+ 0.8/3+ 0.8/4+ 0.4/5.

Comparing Eqs. (2.36) and (2.37), the embedded IT2 FS Ãe can be represented
in terms of the embedded T1 FS Ae as

Ãe = 1∕Ae (2.38)

with the understanding that this means putting a secondary grade of 1 at all points
of Ae. We will make heavy use of this way to represent Ãe in the rest of this
section.

So far we have emphasized the vertical-slice representation (decomposition) of
an IT2 FS as given in Eq. (2.30). Next, we provide a different representation for
such a fuzzy set that is in terms of so-called wavy slices. This representation, which
makes very heavy use of embedded IT2 FSs (Definition 2.14), was first presented
by Mendel and John (2002a) for an arbitrary T2 FS and is the bedrock for the rest
of this chapter. We state this result for a discrete IT2 FS.

THEOREM 2.2 (Wavy-Slice Representation Theorem) For an IT2 FS, for
which X and U are discrete, Ã is the union of all of its embedded IT2 FSs, that is,

Ã =
nA∑
j=1

Ãj
e (2.39)

where (j= 1, … , nA)

Ãj
e =

N∑
i=1

[1∕uj
i]∕xi uj

i ∈ Ju
xi
⊆ Ud = {0, … , 1} (2.40)

and

nA =
N∏

i=1

Mi (2.41)

in which Mi denotes the discretization levels of secondary variable uj
i at each of

the N xi.
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Comments

1. This theorem expresses Ã as a union of simpler IT2 FSs, the Ãj
e. They are

simpler because their secondary MFs are singletons. Whereas Eq. (2.30) is
a vertical-slice representation of Ã, Eq. (2.39) is a wavy-slice representation
of Ã.

2. A detailed proof of this theorem appears in Mendel and John (2002a).
Although it is important to have such a proof, we maintain that the results in
Eq. (2.39) are obvious using the following simple geometric argument:

• The MF of an IT2 FS is three dimensional (3D) (e.g., Fig. 2.8). Each of
its embedded IT2 FSs is a 3D wavy slice (a foil). Create all of the pos-
sible wavy slices and take their union to reconstruct the original 3D MF.
Some points, which occur in different wavy slices, only appear once in the
set-theoretic union.

With reference to Fig. 2.10, Eq. (2.39) means collecting all of the embedded IT2
FSs into a bundle of such T2 fuzzy sets. Equivalently, because of Eq. (2.38), we can
collect all of the embedded T1 FSs into a bundle of such T1 FSs.

COROLLARY 2.1 Because all of the secondary grades of an IT2 FS equal 1, Eqs.
(2.39) and (2.40) can also be expressed as

Ã = 1∕FOU(Ã) (2.42)

where

FOU(Ã) =

⎧⎪⎪⎨⎪⎪⎩

nA∑
j=1

Aj
e =

{
𝜇

Ã
(x) , … , 𝜇Ã(x)

}
∀x ∈ Xd

⋃
∀Ae

Ae = [𝜇
Ã
(x), 𝜇Ã(x)] ∀x ∈ X

(2.43)

and [see Eq. (2.37)]

Aj
e =

N∑
i=1

uj
i∕xi uj

i ∈ Ju
xi
⊆ Ud = {0, … , 1} (2.44)

The top line of Eq. (2.43) is for a discrete universe of discourse, Xd, and contains nA

elements (functions), where nA is given by Eq. (2.41), and the bottom line is for a
continuous universe of discourse and is an interval set of functions, meaning that it
contains an uncountable infinite number of functions that completely fills the space
between 𝜇Ã(x) − 𝜇

Ã
(x), for ∀ x∈X.
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Proof. From Eq. (2.38), each Ãj
e in Eq. (2.39) can be expressed as 1∕Aj

e; hence,

Ã =
nA∑
j=1

(
1∕Aj

e

)
= 1∕

∑nA

j=1
Aj

e ≡ 1∕FOU(Ã) (2.45)

which is Eq. (2.42). Note that, as already mentioned, 𝜇
Ã
(x) and 𝜇Ã(x) are two legit-

imate elements of the nA elements of Aj
e. In fact, they are the lower and upper

bounding functions, respectively, for these nA functions. For discrete universes of
discourse,we can therefore express FOU(Ã) as in the top line of Eq. (2.43),whereas
for continuous universes of discourse we can express FOU(Ã) as in the bottom line
of Eq. (2.43) [using Eqs. (2.33) and (2.35)].

Equation (2.43) is called a wavy-slice representation of FOU(Ã) because all Aj
e

are functions, that is, they are wavy slices. We will see below that we do not need
to know the explicit nature of any of the wavy slices in FOU(Ã) other than 𝜇

Ã
(x)

and 𝜇Ã(x).

2.3.3 Set-Theoretic Operations11

Our goal11 in this section is to derive formulas for the union and intersection of
two IT2 FSs and also the formula for the complement of an IT2 FS because these
operations are widely used in an IT2 FLC. There are different approaches to doing
this, for example, the extension principle (Zadeh, 1975), 𝛼 cuts (Section 2.2.3), or
interval arithmetic (e.g., Klir and Yuan, 1995). Our approach will be based entirely
on the wavy-slice representation in Theorem 2.2, already well-known formulas for
the union and intersection of two T1 FSs [Eqs. (2.4) and (2.5)], and the formula
for the complement of a T1 FS [Eq. (2.6)]. By using Theorem 2.2, the set-theoretic
operations that are needed for IT2 FSs will be derived using T1 FS mathematics.

THEOREM 2.3 (a) The union of two IT2 FSs, Ã and B̃, is

Ã ∪ B̃ = 1∕[𝜇
Ã
(x) ∨ 𝜇

B̃
(x), 𝜇Ã(x) ∨ 𝜇B̃(x)] ∀x ∈ X (2.46)

(b) the intersection of two IT2 FSs, Ã and B̃, is

Ã ∩ B̃ = 1∕[𝜇
Ã
(x) ∧ 𝜇

B̃
(x), 𝜇Ã(x) ∧ 𝜇B̃(x)] ∀x ∈ X (2.47)

and, (c) the complement of IT2 FS Ã, Ã, is

Ã = 1∕[1 − 𝜇Ã(x), 1 − 𝜇
Ã
(x)] ∀x ∈ X (2.48)

11The material in this section is taken from Mendel et al. (2006).
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In Eqs. (2.46) and (2.47) ∨ and ∧ denote disjunction and conjunction operators,
respectively, where in this book ∨=maximum and ∧=minimum.

Proof. Because the proofs of parts (a) and (b) are so similar, we only provide the
proofs for parts (a) and (c).

(a) Consider two IT2 FSs Ã and B̃. From the wavy-slice representation in
Theorem 2.2 and Corollary 2.1, it follows that12

Ã ∪ B̃ =
nA∑
j=1

Ãj
e ∪

nB∑
i=1

B̃i
e =

nA∑
j=1

nB∑
i=1

Ãj
e∪B̃i

e

= 1∕FOU(Ã ∪ B̃) (2.49)

where nA and nB denote the number of embedded IT2 FSs that are associated with
Ã and B̃, respectively, and [see the top part of Eq. (2.43)]

FOU(Ã ∪ B̃) =
nA∑
j=1

nB∑
i=1

Aj
e∪Bi

e (2.50)

What we must now do is compute the union of the nA × nB pairs of embedded T1

FSs Aj
e and Bi

e.
Using Eq. (2.4), it follows that13

Aj
e ∪ Bi

e = max{𝜇Aj
e
(xk), 𝜇Bi

e
(xk)} k = 1, 2, … ,N (2.51)

Consequently, Eq. (2.50) is a collection of nA × nB functions that contain a
lower-bounding function and an upper-bounding function since both 𝜇Aj

e
(xk) and

𝜇Bi
e
(xk) are bounded for all values of xk.
In the case of IT2 FSs, for which the primary variable and primary memberships

are defined over continuous domains, nA =∞ and nB =∞; however, Eq. (2.51) is
still true, and the doubly infinite union of embedded T1 FSs in Eq. (2.50) still con-
tains a lower-bounding function and an upper-bounding function because Ã and B̃
each have a bounded FOU. We now obtain formulas for these bounding functions.

Recall (see Example 2.10) that the upper and lower (discrete, or, if continu-
ous, sampled) MFs for an IT2 FS are also embedded T1 FSs. For Ã, 𝜇Ã(x) and

12Equation (2.49) involves summation and union signs. As in the T1 case, where this mixed notation

is used, the summation sign is simply shorthand for lots of + signs. The + indicates the union between

members of a set, whereas the union sign represents the union of the sets themselves. Hence, by using

both the summation and union signs, we are able to distinguish between the union of sets versus the

union of members within a set.
13Although we present our derivation for maximum, it is also applicable for a general t-conorm.
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𝜇
Ã
(x) denote its upper MF and lower MF, whereas for B̃, 𝜇B̃(x) and 𝜇

B̃
(x) denote

its comparable quantities. It must therefore be true that

sup
∀j,i

max{𝜇Aj
e
(xk), 𝜇Bi

e
(xk)} = max{𝜇Ã(x), 𝜇B̃(x)} ∀x ∈ X

= 𝜇Ã(x) ∨ 𝜇B̃(x) ∀x ∈ X (2.52)

inf
∀j,i

max{𝜇Aj
e
(xk), 𝜇Bi

e
(xk)} = max{𝜇

Ã
(x), 𝜇

B̃
(x)} ∀x ∈ X

= 𝜇
Ã
(x) ∨ 𝜇

B̃
(x) ∀x ∈ X (2.53)

From Eqs. (2.49)–(2.53), we conclude that

Ã ∪ B̃ = 1∕
∑nA

j=1

∑nB

i=1
Aj

e ∪ Bi
e = 1∕[𝜇

Ã
(x) ∨ 𝜇

B̃
(x), 𝜇Ã(x) ∨ 𝜇B̃(x)] ∀x ∈ X

(2.54)
which is Eq. (2.46).

(c) Starting with Eq. (2.39), and Corollary 2.1, we see that

Ã =
nA∑
j=1

Ãj
e =

nA∑
j=1

Ã
j

e = 1∕FOU(Ã) (2.55)

where [focusing on continuous universes of discourse; see also the second line of
Eq. (2.43)]

FOU(Ã) =
nA∑
j=1

A
j

e = [𝜇
Ã
(x), 𝜇

Ã
(x)] ∀x ∈ X (2.56)

Using Eq. (2.6), it follows that

𝜇
A

j

e

(x) = 1 − 𝜇Aj
e
(x) (2.57)

Equation (2.56) is a bundle of functions that has a lower-bounding [𝜇
Ã
(x)] and an

upper-bounding [𝜇
Ã
(x)] function; hence,

𝜇
Ã
(x) = sup

∀j
[1 − 𝜇Aj

e
(xk)] = 1 − 𝜇

Ã
(x) ∀x ∈ X (2.58)

𝜇
Ã
(x) = inf

∀j
[1 − 𝜇Aj

e
(xk)] = 1 − 𝜇Ã(x) ∀x ∈ X (2.59)

In obtaining the right-hand parts of Eqs. (2.58) and (2.59) we have used the facts that
it is always true that 𝜇Ã(x) ≥ 𝜇

Ã
(x), consequently, it is always true that 1 − 𝜇

Ã
(x) ≥

1 − 𝜇Ã(x).
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From Eqs. (2.55), (2.56), (2.58) and (2.59), we conclude that

Ã = 1∕
∑nA

j=1
A

j

e = 1∕[1 − 𝜇Ã(x), 1 − 𝜇
Ã
(x)] ∀x ∈ X (2.60)

which is Eq. (2.48).

The generalizations of parts (a) and (b) of Theorem 2.3 to more than two IT2
FSs follows directly from Eqs. (2.46) and (2.47) and the associative property of T2
FSs, for example,

Ã ∪ B̃ ∪ C̃ = 1∕[𝜇
Ã
(x) ∨ 𝜇

B̃
(x) ∨ 𝜇

C̃
(x), 𝜇Ã(x) ∨ 𝜇B̃(x) ∨ 𝜇C̃(x)] ∀x ∈ X

2.3.4 Centroid of an IT2 FS

The centroid of an IT2 FS, which is a very important computation in this book
because it is used as a first step in the defuzzification of an IT2 FS, provides14 a
measure of the uncertainty of such an FS.This is explainedmore carefully at the end
of this subsection. Using Eq. (2.43), the centroid of IT2 FS Ã,CÃ(x), is defined next.

Definition 2.16 Using the wavy-slice representation Theorem 2.2 for IT2 FS Ã,
the centroid CÃ(x) of Ã is the union of the centroids, c(Ae), of all its embedded
T1 FSs Ae. Associated with each of these numbers is a membership grade of 1
because the secondary grades of an IT2 FS are all equal to 1. This means (Karnik
and Mendel, 2001a; Mendel, 2001)

CÃ(x) = 1∕
⋃
∀Ae

cÃ(Ae) = 1∕
⋃
∀Ae

∑N

i=1
xi𝜇Ae

(xi)∑N

i=1
𝜇Ae

(xi)

= 1∕{cl(Ã), … , cr(Ã)} ≡ 1∕[cl(Ã), cr(Ã)] (2.61)

where

cl(Ã) =min
∀Ae

cÃ(Ae) = min
∀𝜃i∈[𝜇Ã

(xi),𝜇Ã(xi)]

∑N

i=1
xi𝜃i∑N

i=1
𝜃i

(2.62)

cr(Ã) =max
∀Ae

cÃ(Ae) = max
∀𝜃i∈[𝜇Ã

(xi),𝜇Ã(xi)]

∑N

i=1
xi𝜃i∑N

i=1
𝜃i

(2.63)

CÃ(x) is shown as an explicit function of x because the centroid of each embedded
T1 FS falls on the x axis. CÃ(x) is a T1 interval fuzzy set (IFS). Note that it is
customary in the IT2 FS literature to call [cl(Ã), cr(Ã)] the centroid of Ã, ignoring
the uninformative MF grade of 1.

14Most of the material in this section is taken from Mendel and Wu (2010, Chapter 2; © 2010, IEEE).
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Recall that there are nA embedded T1 FSs that are contained within
FOU(Ã); hence, computing their centroids leads to a collection of nA numbers,∑N

i=1 xi𝜃i∕
∑N

i=1 𝜃i, that have both a smallest and largest element, cl(Ã) ≡ cl and

cr(Ã) ≡ cr, respectively.15 That such numbers exist is because
∑N

i=1 xi𝜃i∕
∑N

i=1 𝜃i is
a bounded number. When the discretization of the primary variable and primary
membership approach zero, {cl(Ã), … , cr(Ã)} → [cl(Ã), cr(Ã)], an interval
set.

Because xi are sampled values of the primary variable, it is true that in Eqs.
(2.62) and (2.63)

x1 < x2 < · · · < xN (2.64)

in which x1 denotes the smallest sampled value of x and xN denotes the largest
sampled value16 of x.

Examining Eqs. (2.62) and (2.63) it seems that cl and cr could be computed by
adding and then dividing interval sets. Klir and Yuan (1995) provide the following
closed-form formula for the division of two interval sets:

[a, b]∕[d, e] = [a, b] ×
[
1∕e, 1∕d

]
=

[
min (a∕d, a∕e, b∕d, b∕e) ,max (a∕d, a∕e, b∕d, b∕e)

]
(2.65)

It would seem that this result could be applied to determine closed-form formulas
for cl and cr. Unfortunately, this cannot be done because the derivation of this result
assumes that a, b, d, and e are independent. Due to the appearance of 𝜃i in both the
numerator and denominator of Eqs. (2.62) and (2.63), the required independence
is not present; hence, this interesting closed-form result cannot be used to compute
cl and cr.

Although cl(Ã) and cr(Ã) cannot be computed in closed-form, lower and upper
bounds for them can be computed in closed form in terms of the geometry of an
FOU (Mendel and Wu, 2006, 2007a).

Karnik and Mendel (2001a) have developed iterative algorithms—now known
as KM algorithms—for computing cl and cr. These algorithms, which are very
heavily used in many later chapters of this book, are derived and discussed in
Section 2.3.6. The KM algorithms do not compute the exact values of cl and cr;
instead, they lead to approximations of those values, cl(L) and cr(R), that have the
following structures:

15When there is no ambiguity about the IT2 FS whose centroid is being computed, it is common to

shorten cl(Ã) and cr(Ã) to cl and cr, respectively, something that is done in this book.
16If Gaussian MFs are used, then in theory x1 →−∞ and xN →∞; but, in practice when truncations are

used x1 and xN are again finite numbers.
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cl(L) =

∑L

i=1
xi𝜇Ã(xi) +

∑N

i=L+1
xi𝜇Ã

(xi)∑L

i=1
𝜇Ã(xi) +

∑N

i=L+1
𝜇

Ã
(xi)

≈ cl (2.66)

cr(R) =

∑R

i=1
xi𝜇Ã

(xi) +
∑N

i=R+1
xi𝜇Ã(xi)∑R

i=1
𝜇

Ã
(xi) +

∑N

i=R+1
𝜇Ã(xi)

≈ cr (2.67)

In these equations L and R are called switch points, and it is these switch points
that are determined by the KM algorithms [as well as by many other algorithms,
e.g., EKM (Wu and Mendel, 2009) and EIASC algorithms (Wu and Nie, 2011)].
Observe that in Eq. (2.66) when i=L+ 1, 𝜃i switches from values on the UMF,
𝜇Ã(xi), to values on the LMF, 𝜇

Ã
(xi); and, in Eq. (2.67) when i=R+ 1, 𝜃i switches

from values on the LMF, 𝜇
Ã
(xi), to values on the UMF, 𝜇Ã(xi). An example that

illustrates the two switch points is given in Fig. 2.12.

(a)

(b)

1

x
L

R

1

x

FOU(Ã)

FOU(Ã)

Figure 2.12 Embedded T1 FSs that are used to compute the switch points L and R are
shown by the heavy lines in (a) and (b), respectively (Mendel, 2007; © 2007, IEEE).



INTERVAL TYPE-2 FUZZY SETS 57

When Eqs. (2.66) and (2.67) are used to approximate the centroid of IT2 FS Ã,
then cl(L) [cr(R)] better approximates cl [cr] as the sampling interval of primary
variable x gets smaller and smaller. How close one actually needs the approxima-
tions to be to the actual values is application dependent. Many times in a “fuzzy”
problem extremely high accuracy is not needed.

Wu (2011) has provided the following insights about the structure of Eq. (2.66)
[(2.67)] as it relates to the solution of the optimization problem in Eq. (2.62)
[(2.63)]: Examining the right-hand side of Eq. (2.62), in order to obtain the
smallest value of

∑N
i=1 xi𝜃i∕

∑N
i=1 𝜃i, we want to associate the largest value of 𝜃i

[namely, 𝜇Ã(xi)] with the smallest values of xi and then the smallest values of 𝜃i
[namely, 𝜇

Ã
(xi)] with the largest values of xi. The opposite is true for obtaining the

largest value of
∑N

i=1 xi𝜃i∕
∑N

i=1 𝜃i in Eq. (2.63).
Note that Eqs. (2.66) and (2.67) can also be expressed as (e.g., X. Liu and

Mendel, 2011)

cl(k) =

∑k

i=1
xi𝜇Ã(xi) +

∑N

i=k+1
xi𝜇Ã

(xi)∑k

i=1
𝜇Ã(xi) +

∑N

i=k+1
𝜇

Ã
(xi)

(2.68)

⎧⎪⎨⎪⎩
L = argmin

k=1,… ,N−1

cl (k)

cl(L) ≈ cl

(2.69)

cr(k) =

∑k

i=1
xi𝜇Ã

(xi) +
∑N

i=k+1
xi𝜇Ã(xi)∑k

i=1
𝜇

Ã
(xi) +

∑N

i=k+1
𝜇Ã(xi)

(2.70)

⎧⎪⎨⎪⎩
R = argmax

k=1,… ,N−1

cr (k)

cr(R) ≈ cr

(2.71)

As will be demonstrated in the next subsection, additional insight can be gained
from the formulations in Eqs. (2.68)–(2.71).

It is well known from information theory that entropy provides a measure
of the uncertainty of a random variable (Cover and Thomas, 1991). Recall that
a one-dimensional random variable that is uniformly distributed over a region
has entropy equal to the logarithm of the length of that region. Comparing the
MF 𝜇CÃ

(x) of the IFS CÃ(x) [where 𝜇CÃ
(x) = 1 when x∈ [cl, cr] and 𝜇CÃ

(x) = 0
when x∉ [cl, cr]] with the probability density function pX(x) that is uniformly
distributed over [cl, cr] [where pX(x)= (cr − cl)

− 1 when x∈ [cl, cr] and pX(x)= 0
when x∉ [cl, cr]], it is clear that they are similar to within a scale factor. It is
therefore reasonable to consider the span of the IFS CÃ(x), cr − cl, as a measure of
the extent of the uncertainty of an IT2 FS (Wu and Mendel, 2002).
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TABLE 2.2 Propertiesa of cl(k) and cr(k)

Name of Property cl(k) cr(k)

Location xL ≤ cl(L)< xL+ 1 xR ≤ cr(R)< xR+ 1

Shape
cl(k) > xk when xk < cl
cl(k) < xk when xk > cl

cr(k) > xk when xk < cr
cr(k) < xk when xk > cr

Monotonicity
cl(k − 1) ≥ cl(k) when xk < cl
cl(k + 1) ≥ cl(k) when xk > cl

cr(k − 1) ≤ cr(k) when xk < cr
cr(k + 1) ≤ cr(k) when xk > cr

a Proofs of these properties are in Liu and Mendel (2008).

2.3.5 Properties of cl(k) and cr(k)

Before obtaining the KM algorithms (as well as some others), it is useful to gain as
much understanding about the two optimization problems in Eqs. (2.69) and (2.71)
as possible. The three properties summarized in Table 2.2 provide a lot of insight
into those problems (Liu and Mendel, 2008).

The location property locates cl(L) and cr(R) either between two specific adja-
cent values of xi or at the left end point of these adjacent values [see17 Fig. 2.13,
where x4 < cl(L)< x5].

The shape property explains the shapes of cl(k) and cr(k) both to the left and
right of their respective minimum or maximum points, cl and cr (see Fig. 2.13). By
this property we know that cl(k) [or cr(k)] is above the line y= xk when xk is to the
left of cl (cr) and it is below that line when xk is to the right of cl (cr).

The monotonicity property also helps us to understand the shapes of cl(k) and
cr(k). When cl(k) is going in the downward direction (see Fig. 2.13), it cannot
change that direction before xk = cl; and, after xk = cl, when it goes in the upward
direction, it cannot change that direction. When cr(k) is going in the upward direc-
tion [we leave it to the reader to create a figure like Fig. 2.13 for cr(k)], it cannot
change that direction before xk = cr; and, after xk = cr,when it goes in the downward
direction, it cannot change that direction.

From knowledge of the shapes18 of cl(k) and cr(k), it should be clear to read-
ers who are familiar with optimization theory that our two optimization problems
are easy. Each problem has only one global extremum (Fig. 2.13) and there are
no local extrema. Regardless of how one initializes any algorithm for finding the
extremum, convergence will occur, that is, it is impossible to become trapped at a
local extremum because of how each algorithm is initialized. It is also obvious, from
the shapes of cl(k) and cr(k), that the algorithms that compute cl(L) and cr(R) will
converge very quickly. In fact, the shapes of cl(k) and cr(k) suggest that quadratic
convergence should be possible.

17For computing the centroid of an IT2 FS the xi in Eq. (2.62) or (2.63) must be uniformly spaced, or

else convergence of cl(L) to cl [and cr(R) to cr] will not occur; however, nonuniformly spaced xi are

important in other applications that use KM algorithms, such as center-of-sets type reduction, which is

explained in Section 2.5.2.4.
18Apparently, such shape knowledge only became known in 2008 (Liu and Mendel, 2008); it was not

known when the KM algorithms were invented.
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Location 
property

Shape & 
monotonicity  

properties

x9

x8

x7

x6

x5

x3

x2

x1 x1 x2 x3 x4 x5 x6 x7 x8 x9

xk

y = xk

x4

cl(L) ≈ cl (cl,cl)

cl(k)

Figure 2.13 Illustration of the three properties associated with finding cl(L). The solid line
shown for y= xk only has values at x1, … , x9; the large dots are cl(k), k= 1, … , 9; and (cl, cl)
locates the theoretically optimal solution that can only be attained as sampling goes to zero.

2.3.6 KM Algorithms as Well as Some Others

Recall that any optimization algorithm requires a good way to (1) initialize it, (2)
move from one step to the next, and (3) stop.

A brute-force way to find cl(L) [cr(R)] is to compute {cl(k)}N−1
k=1

[{cr(k)}N−1
k=1

] and
then locate its smallest (largest) element.This is called “brute force” (or exhaustive)
because it does not focus on a good way to initialize the process, move from one
step to the next, or stop. All algorithms devised for finding cl(L) [cr(R)] focus on at
least one of these three requirements of an optimization algorithm.

Karnik–Mendel algorithms do not provide a good way for their initialization,
nor do they provide the best way for stopping them, but they do provide a good way
to move from one step to the next. We derive the KM algorithms next.

Let19

y(𝜃1, … , 𝜃N) ≡
∑N

i=1
xi𝜃i∑N

i=1
𝜃i

(2.72)

If the usual calculus approach to optimizing y(𝜃1, … , 𝜃N) is taken and it is differen-
tiated with respect to any one of the N 𝜃i, say 𝜃k, it follows (after some algebra) that

19Our presentation follows that of Mendel and Wu (2007b).
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𝜕y(𝜃1, … , 𝜃N)
𝜕𝜃k

= 𝜕
𝜕𝜃k

⎡⎢⎢⎣
∑N

i=1
xi𝜃i∑N

i=1
𝜃i

⎤⎥⎥⎦ =
xk − y(𝜃1, … , 𝜃N)∑N

i=1
𝜃i

(2.73)

Because
∑N

i=1 𝜃i > 0, it is easy to see from Eq. (2.73) that

𝜕y(𝜃1, … , 𝜃N)
𝜕𝜃k

{≥ 0 if xk ≥ y
(
𝜃1, … , 𝜃N

)
< 0 if xk < y

(
𝜃1, … , 𝜃N

) (2.74)

Unfortunately, equating 𝜕y/𝜕𝜃k to zero does not give us any information about the
value of 𝜃k that optimizes y(𝜃1, … , 𝜃N), that is,

y(𝜃1, … , 𝜃N) = xk ⇒

∑N

i=1
xi𝜃i∑N

i=1
𝜃i

= xk ⇒

∑N

i≠k
xi𝜃i∑N

i≠k
𝜃i

= xk (2.75)

The last part of Eq. (2.75) was obtained after cross multiplication and cancellation.
Observe that 𝜃k no longer appears in the final expression in Eq. (2.75), so that the
direct calculus approach does not work.

Equation (2.74) does give the direction in which 𝜃k should be changed in order
to increase or decrease y(𝜃1, … , 𝜃N), that is,

⎧⎪⎪⎨⎪⎪⎩
If xk > y

(
𝜃1, … , 𝜃N

)
,

y(𝜃1, … , 𝜃N) increases (decreases) as 𝜃k increases (decreases)
If xk < y(𝜃1, … , 𝜃N),

y(𝜃1, … , 𝜃N) increases (decreases) as 𝜃k decreases (increases)

(2.76)

Recall [see Eqs. (2.62) and (2.63)] that the maximum value that 𝜃k can attain is
𝜇Ã(xk) and the minimum value that it can attain is 𝜇

Ã
(x). Equation (2.76) therefore

implies that y(𝜃1, … , 𝜃N) attains its maximum value, cr, if

𝜃k =

{
𝜇

Ã

(
xk

)
∀k ϶ xk < y(𝜃1, … , 𝜃N)

𝜇Ã(xk) ∀ k ϶ xk > y(𝜃1, … , 𝜃N)
(2.77)

Similarly, it can be deduced from (2.76) that y(𝜃1, … , 𝜃N) attains its minimum
value, cl, if

𝜃k =

{
𝜇Ã

(
xk

)
∀k ϶ xk < y(𝜃1, … , 𝜃N)

𝜇
Ã
(xk) ∀k ϶ xk > y(𝜃1, … , 𝜃N)

(2.78)

Because there are only two possible choices for 𝜃k that are stated above, to compute
cr(R) or cl(L), 𝜃k switches only one time between 𝜇Ã(xk) and 𝜇

Ã
(xk).
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A KM algorithm (aswell as all others) locates the switch point, and in general the
switch point for cr(R), R, is different from the switch point for cl(L), L; hence, there
are two KM algorithms, one for L and one for R. Regardless of what algorithms
are used to compute the switch points, the final expression for cl(L) and cr(R) is
Eq. (2.66) and Eq. (2.67), respectively.

Historically, the KM algorithms were the first, and are still the most widely used,
algorithms for computing the switch points. They are summarized in Table 2.3.
Observe that the first two steps of each KM algorithm are identical.

The enhanced KM (EKM) algorithms [Wu and Mendel, (2009)] start with the
KM algorithms and modify them in three ways: (1) A better initialization is used
to reduce the number of iterations; (2) the termination condition of the iterations is
changed to remove an unnecessary iteration; and (3) a subtle computing technique
is used to reduce the computational cost of each of the algorithm’s iterations. The
EKM algorithms are summarized in Table 2.4.

The better initializations are shown in step 1 ofTable 2.4, and both were obtained
from extensive simulations. A close examination of steps 2–5 in Table 2.3 reveals
that the termination conditions can be moved one step earlier, something that is
done in Table 2.4. The “subtle computing technique” uses the fact that very little
changes from one iteration to the next, so instead of recomputing everything on
the right-hand sides of cl(k) and cr(k), as is done in Table 2.3, only the portions of
those right-hand sides that do change are recomputed, as is done in Table 2.4. For
detailed explanations of how each of the three modifications are implemented, see
Wu and Mendel (2009).

Extensive simulations have shown that on average the EKM algorithms can save
about two iterations, which corresponds to a more than 39% reduction in compu-
tation time. Both the KM and EKM algorithms are quadratically convergent (Liu
and Mendel, 2011) (see, also, the Comment at the end of this section).

Above, we discussed a brute-force algorithm, one that did not satisfy any of
the three desired requirements of an optimization algorithm. Melgarejo (2007) and
Duran et al. (2008) have beefed up the brute-force algorithm in their iterative algo-
rithm + stopping condition (IASC), and D. Wu and Nie (2011) have made some
improvements to it in their enhanced IASC (EIASC). Both the IASC and EIASC,
which are iterative algorithms, are based on the shape and monotonicity proper-
ties (Table 2.2) so that cl(k) in Eq. (2.68) first monotonically decreases and then
monotonically increases with the increase of k, and, cr(k) in Eq. (2.69) first mono-
tonically increases and then monotonically decreases with the increase of k. The
beautifully simple EIASC is given in Table 2.5. According to Wu and Nie (2011,
p. 2135), “both the IASC and EIASC significantly outperformed the KM algo-
rithms, especially when N is small (N≤ 100). And, EIASC outperformed IASC.
The computational cost of both IASC and EIASC increase rapidly as N increases
since they need to evaluate many possible switch points before finding the correct
ones.”

One could ask: Why wasn’t each EIASC algorithm initialized as in the respective
EKM algorithm (see step 1 in Table 2.4)? D. Wu actually tried this. His simulations
(2011) showed that this further enhanced EIASC algorithm only outperformed the
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Ã
(x

i)]
∕2

,
i=

1
,
…

,N
,

an
d

th
en

co
m

p
u

te

c′
=

c(
𝜃 1

,
…

,𝜃
N
)=

N ∑ i=
1

x i
𝜃 i

/N ∑ i=
1

𝜃 i

2
F

in
d

k
(1
≤k

≤N
−

1
)
su

ch
th

at
x k
≤c

′ ≤
x k

+
1

3
S

et
𝜃 i

=
𝜇

Ã
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TABLE 2.5 EIASC

Step EIASC for cl(L) EIASC for cr(R)

1 Initialize Initialize

a =
∑N

i=1
xi𝜇Ã

(xi)

b =
∑N

i=1
𝜇

Ã
(xi)

a =
∑N

i=1
xi𝜇Ã(xi)

b =
∑N

i=1
𝜇Ã(xi)

L= 0 R=N

2 Compute Compute

L=L+ 1 a = a + xR[𝜇Ã(xR) − 𝜇
Ã
(xR)]

a = a + xL[𝜇Ã(xL) − 𝜇
Ã
(xL)] b = b + [𝜇Ã(xR) − 𝜇

Ã
(xR)]

b = b + [𝜇Ã(xL) − 𝜇
Ã
(xL)] cr(R)= a/b

cl(L)= a/b R=R− 1

3 If cl(L)≤ xL+ 1, stop, otherwise
go to step 2

If cr(R)≥ xR, stop, otherwise
go to step 2

Source: Wu and Nie (2011).

EIASC algorithm when N > 1000. For fuzzy logic controllers, usually N≪ 1000;
hence, this further enhanced EIASC algorithm was not recommended.

The enhanced opposite direction searching (EODS) algorithm, developed by Hu
et al. (2012) is based on the location property in Table 2.2. Although it is somewhat
faster than the EIASC, it is much more complicated to understand; hence, we do
not include it here.

Comments

1. Many studies about KM algorithms and improved KM algorithms provide
separate simulation results for both the number of iterations required for their con-
vergence and overall computation time. The former does not change as computers
or hardware change or improve, but the latter does; hence, a more meaningful met-
ric would be computation time per iteration. This number will, of course, become
smaller and smaller as computers become faster and faster, something that always
seems to occur. One may conjecture that, at some not-to-distant future time, com-
putation time per iteration will be so small that it will not matter which improved
KM algorithm is used because the differences in overall computation time will be
imperceptible to a human. Although this is true for a human, it is very important
to realize that when the KM algorithms are implemented in hardware, then the
faster they can be performed frees up the hardware to perform other computations,
something that can be very important for practical applications. Consequently, it
is important to perform the KM calculations as quickly as possible, which is why
there has been extensive work on improving the KM algorithms.
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2. It is important to clear up some confusion that exists about the number of
iterations that are required by the KM algorithms. Note that if parallel processing
is available (as in a hardware implementation of the algorithms), then the two KM
algorithms can be run concurrently because they are completely independent of
one another.

The earliest KM study (Karnik and Mendel, 2001a) proved that each KM algo-
rithm requires at most N iterations. This bound is extremely conservative but, unfor-
tunately, is still being quoted by some researchers who have not followed the later
literature about the KM algorithms. In Wu and Mendel (2002), it was stated (without
proof) that the average number of iterations of each KM algorithm is ≤ (N+ 2)/4.
While this is a much lower bound than N, it is also still very conservative. In Liu and
Mendel (2008, Appendix C), it is proved that the number of iterations of each KM
algorithm is ≤ ⌊(N+ 1)/2⌋, which is also much smaller than N. Superexponential
(not linear) convergence for continuous versions of the KM (or EKM) algorithms
was proven in Mendel and Liu (2007), and quadratic convergence for them was
proven in Liu and Mendel (2011).

Many simulation studies have been performed in which it has been observed
that for two significant figures (often this accuracy is adequate for an FLC) the
KM algorithms achieve their final results in from two to six iterations, regardless
of N. The size of N in Eqs. (2.66) and (2.67) can increase the ratio of computation
time per iteration because the larger N is the more multiplications and additions
have to be performed, and this can lead to a delay that may cause performance
degradations in real-time applications. For non-real-time applications, this delay is
of no consequence. Even with today’s computers (as of the year 2009), computation
time per iteration is between 10− 5 and 10− 3 sec (e.g., Wu and Mendel, 2009).

Example 2.11 Figure 2.14 depicts an FOU for an IT2 FS and four of its embedded
T1 FSs (Mendel and Wu, 2010, pp. 54–55). The center of gravity for each of these
embedded T1 FSs is: c(a) = 4.5603, c(b) = 4.5961, c(c) = 3.9432, and c(d) = 5.2333.
By using the KM algorithms, it is established that cl(L)= c(c) and cr(R)= c(d); hence,
this example should dispel any mistaken belief that the end points of the centroid
of an IT2 FS are associated with the centroids of its lower- and upper-membership
functions, c(a) and c(b). They are associated with embedded T1 FSs that involve
segments from both the lower- and upper-membership functions.

Example 2.12 In this example we show details for the steps of the two KM algo-
rithms given inTable 2.3, using the IT2 FS depicted in Fig. 2.15.This FOU is for the
output Ã = Left that is used in the Chapter 3 mobile robot example, Example 3.3.
In order to compute the centroid of this IT2 FS, we use a very coarse discretization,
namely N= 4, with x1 =− 120, x2 =− 90, x3 =− 60, and x4 =− 30. This is done
only for illustrative purposes. When the centroid of this FOU is computed using a
computer implementation of the KM algorithm, a much finer sampling would be
used in order to ensure greater accuracy in the computations of cl and cr.

Numerical values for 𝜇
Ã
(xi), 𝜇Ã(xi), and [𝜇

Ã
(xi) + 𝜇Ã(xi)]∕2 (i= 1, 2, 3, 4) are

(see Fig. 2.15)
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Figure 2.14 FOU and four embedded T1 FSs: (a) and (b) correspond to the lower and
upper MFs, respectively; (c) and (d) (which are a result of using the KM algorithms) are
associated with cl(L) and cr(R), respectively (Mendel and Wu, 2010, Chapter 2; © 2010,
IEEE).
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Figure 2.15 Very rough discretization of Left output IT2 FS.
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

i = 1 x1 = −120 𝜇
Ã

(
x1

)
= 0 𝜇Ã(x1) = 0

𝜇
Ã
(x1) + 𝜇Ã(x1)

2
= 0

i = 2 x2 = −90 𝜇
Ã
(x2) = 0.4 𝜇Ã(x2) = 1

𝜇
Ã
(x2) + 𝜇Ã(x2)

2
= 0.7

i = 3 x3 = −60 𝜇
Ã
(x3) = 0.4 𝜇Ã(x3) = 1

𝜇
Ã
(x3) + 𝜇Ã(x3)

2
= 0.7

i = 4 x4 = −30 𝜇
Ã
(x4) = 0 𝜇Ã(x4) = 0

𝜇
Ã
(x4) + 𝜇Ã(x4)

2
= 0

(2.79)

Steps of the KM Algorithm for cl (Table 2.3)

Iteration 1

Step 1: Initialize 𝜃i as [𝜇
Ã
(xi) + 𝜇Ã(xi)]∕2 using Eq. (2.79), and then compute

c′ =
4∑

i=1

xi𝜃i

/ 4∑
i=1

𝜃i

as:

c′ = [(−120 × 0) + (−90 × 0.7) + (−60 × 0.7)

+ (−30 × 0)]∕(0 + 0.7 + 0.7 + 0) = −75

Step 2: Find k (1≤ k≤ 3) such that xk ≤ c′ ≤ xk+ 1: Observe that − 75 lies
between x2 =− 90 and x3 =− 60; hence, k= 2.

Step 3: Set 𝜃i = 𝜇Ã(xi)when i≤ 2, and 𝜃i = 𝜇
Ã
(xi)when i≥ 3, and then compute

cl(2) using Eq. (2.75) and the LMF and UMF values that are given in
Eq. (2.79), as

cl(2) =[(−120 × 0) + (−90 × 1) + (−60 × 0.4)

+ (−30 × 0)]∕(0 + 1 + 0.4 + 0) = −81.43

Step 4: Check if cl(2)= c′: Because − 81.43≠− 75, we go to step 5.

Step 5: Set c′ =− 81.43 and go to step 2 and begin iteration 2.

Iteration 2

Step 2: Find k (1≤ k≤ 3) such that xk ≤ c′ ≤ xk+ 1: Observe that c′ =− 81.43 lies
between x2 =− 90 and x3 =− 60; hence, k= 2, which is the same value
as obtained in iteration 1.
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Step 3: Set 𝜃i = 𝜇Ã(xi)when i≤ 2, and 𝜃i = 𝜇
Ã
(xi)when i≥ 3, and then compute

cl (2) using Eq. (2.75) and the LMF and UMF values that are given in
Eq. (2.79). This will be the same value as obtained in iteration 1, namely
cl(2)=− 81.43.

Step 4: Check if cl(2)= c′: Because − 81.43=− 81.43, we can stop and set
L= 2.

Steps of the KM Algorithm for cr (Table 2.3)

Iteration 1

Steps 1 and 2 are exactly the same as in the KM algorithm for cl; hence, c′ =− 75
and k= 2.

Step 3: Set 𝜃i = 𝜇
Ã
(xi)when i≤ 2, and 𝜃i = 𝜇Ã(xi)when i≥ 3, and then compute

cr(2) using Eq. (2.75) and LMF and UMF values given in Eq. (2.79), as

cr(2) =[(−120 × 0) + (−90 × 0.4) + (−60 × 1)

+ (−30 × 0)]∕(0 + 0.4 + 1 + 0) = −68.47

Step 4: Check if cr(2)= c′: Because − 68.57≠− 75, we go to step 5.

Step 5: Set c′ =− 68.57 and go to step 2 and begin iteration 2.

Iteration 2

Step 2: Find k (1≤ k≤ 3) such that xk ≤ c′ ≤ xk+ 1: Observe that c′ =− 68.75 lies
between x2 =− 90 and x3 =− 60; hence, k= 2, which is the same value
as obtained in iteration 1.

Step 3: Set 𝜃i = 𝜇
Ã
(xi) when i≤ 2, and 𝜃i = 𝜇Ã(xi) when i≥ 3, and then

compute cl(2) using Eq. (2.75) and LMF and UMF values given in
Eq. (2.79). This will be the same value as obtained in iteration 1,
namely cl(2)=− 68.57.

Step 4: Check if cl(2)= c′: Because − 68.57=− 68.57, we can stop and set
R= 2.

Note that when the EKM algorithm is used, stopping occurs in step 3 as soon as it
is found that k found in step 2 of iteration 2 is the same as k found in iteration 1.

2.4 GENERAL TYPE-2 FUZZY SETS

2.4.1 𝜶-Plane/zSlice Representation

A general T2 FS (GT2 FS) sits atop its FOU; hence, beginning with Ã in Eq. (2.25),
a GT2 FS can be expressed as [see, also Eqs. (2.30), (2.33), and (2.35)]
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⎧⎪⎨⎪⎩
Ã = ∫∀x∈X

𝜇Ã (x) ∕x = ∫∀x∈X

[
∫∀u∈Ju

x

fx (u) ∕u

]/
x

Ju
x = {(x, u) ∶ ∀u ∈ [LMFFOU(Ã)(x),UMFFOU(Ã)(x)]} ⊆ [0, 1]

(2.80)

where fx(u) is the secondary grade of Ã. For a GT2 FS fx(u)≠ 1 for ∀ x∈X and
∀u ∈ Ju

x . Equation (2.80) is the vertical-slice representation of a GT2 FS; it has
found wide use in computations involving GT2 FSs.

Liu (2008) introduced the horizontal-slice decomposition (representation) of a
GT2 FS. Because a horizontal slice is analogous to an 𝛼-cut raised to level 𝛼 of a
T1 FS (Section 2.2.3), it is called the 𝛼-plane representation of a GT2 FS, or, when
x, y and z are used for the three coordinates of a GT2 FS, a zSlice representation
(Wagner and Hagras, 2010).

Definition 2.17 An 𝛼-plane for the GT2 FS Ã, denoted Ã𝛼 , is the union of all
primary memberships of Ã whose secondary grades are greater than or equal to 𝛼
(0≤ 𝛼 ≤ 1), that is,

Ã𝛼 = {(x, u), 𝜇Ã(x, u) ≥ 𝛼|∀x ∈ X, ∀u ∈ [0, 1]}

= ∫∀x∈X ∫∀u∈[0,1]
{(x, u)|fx(u) ≥ 𝛼} (2.81)

Note that
FOU(Ã) = Ã0 (2.82)

and that, just as an 𝛼 cut of a T1 FS resides on its 1D domain of support X, Ã𝛼
resides on its 2D domain of support X×U.

Each Ã𝛼 can be converted to a special IT2 FS RÃ𝛼
(Mendel, 2010) where

RÃ𝛼
(x, u) = 𝛼∕Ã𝛼 ∀x ∈ X, u ∈ [0, 1] (2.83)

Observe RÃ𝛼
(x, u) raises Ã𝛼 to level-𝛼 so that RÃ𝛼

is an IT2 FS all of whose secondary
MFs equal 𝛼 (rather than 1 as would be the case for the usual IT2 FS). RÃ𝛼

is called

an 𝛼-level (zSlice) T2 FS; it is also designated as Ã(𝛼) (Liu, 2008).
An example that shows one RÃ𝛼

(x, u) is provided in Fig. 2.16 (Mendel, 2012).

Observe that the GT2 FS Ã can also be represented as the union of its vertical
slices—the secondary MFs in Eq. (2.80)—and that each 𝛼-plane intersects a sec-
ondary MF at an 𝛼-cut of that MF raised to level-𝛼.

THEOREM 2.4 The 𝛼-plane (zSlice) representation for a GT2 FS is

Ã =
⋃

𝛼∈[0,1]
RÃ𝛼

=
⋃

𝛼∈[0,1]
𝛼∕Ã𝛼 = sup

𝛼∈[0,1]

[
𝛼∕Ã𝛼

]
(2.84)

In Eq. (2.84),
⋃

is the fuzzy union over 𝛼.

work
高亮

work
高亮
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x
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Secondary MF
(vertical slice)

α cut raised to level α

RÃα (x,u) also called a zslice

FOU(Ã)

Figure 2.16 A 2–1/2D plot of 𝛼-plane representation of a GT2 FS (Mendel 2012; © 2012,
IEEE). The 𝜇(x, u) direction appears to come out of the page and is the new third dimension
of a GT2 FS.

Proof. To begin, we express Eq. (2.80) as

Ã = ∫∀x∈X
𝜇Ã(x)∕x =∫∀x∈X

[
∫∀u∈[0,1]

fx(u)∕u

]/
x (2.85)

Note that ∫ ∀ u∈ [0,1] fx(u)/u is a T1 FS, called a secondary MF or a vertical slice,
𝜇Ã(x), that is,

𝜇Ã(x) = ∫∀u∈[0,1]
fx(u)∕u (2.86)

This is a generalization of Eq. (2.28) from an IT2 FS to a GT2 FS. Because 𝜇Ã(x)
is a T1 FS, it can also be expressed by means of the 𝛼-cut decomposition Theorem
2.1 as

𝜇Ã(x) =
⋃

𝛼∈[0,1]
𝜇Ã(x|𝛼) = ⋃

𝛼∈[0,1]
𝛼∕𝜇Ã(𝛼) (2.87)
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where 𝜇Ã(𝛼) is the 𝛼-cut of the T1 FS 𝜇Ã(x), that is, [see Eq. (2.7)]

𝜇Ã(𝛼) = {x|𝜇Ã(x) > 𝛼} (2.88)

Substituting Eq. (2.87) into Eq. (2.85), it follows that

Ã = ∫∀x∈X

⋃
𝛼∈[0,1]

𝛼∕𝜇Ã(𝛼)∕x =
⋃

𝛼∈[0,1]
∫∀x∈X

𝛼∕𝜇Ã(𝛼)∕x

=
⋃

𝛼∈[0,1]
𝛼∕

[
∫∀x∈X

𝜇Ã (𝛼) ∕x

]
(2.89)

Using the concept of an 𝛼-plane (Definition 2.17), Eq. (2.89) can also be expressed
as

Ã =
⋃

𝛼∈[0,1]
𝛼
/[

∫∀x∈X
𝜇Ã (𝛼) ∕x

]
=

⋃
𝛼∈[0,1]

𝛼∕Ã𝛼 =
⋃

𝛼∈[0,1]
RÃ𝛼

(x, u) ∀x ∈ X, u ∈ [0, 1]

(2.90)
which is Eq. (2.84).

Comment Chapter 7 uses the term “zSlice” instead of 𝛼-level T2FS and presents
some of the material that is presented below directly in terms of those slices. We
present this material in terms of 𝛼-planes so that the reader can easily see the direct
connections between them and earlier T1 and IT2 results. Table 2.6 provides a
comparison of 𝛼-plane and zSlice descriptions of some important items.

TABLE 2.6 Comparisons of 𝜶-Plane and zSlice Descriptions

Item 𝛼-Plane Description zSlice Description

Coordinates (x, u,𝜇) (x, y, z)

𝛼-plane Ã𝛼 = ∫∀x∈X ∫∀u∈[0,1]
{(x, u)|fx(u) ≥ 𝛼} Z̃0 projected onto X × Y

zSlice 𝛼∕Ã𝛼 Z̃z = ∫∀x∈X ∫∀y∈[0,1]
z∕(x, y)

FOU(Ã) Ã0 Z̃0

Vertical slice (xj ∈X) ∫∀𝛼∈[0,1] ∫∀u∈[0,1]
𝛼∕(xj, u) ∫∀z∈[0,1] ∫∀y∈[0,1]

z∕(xj, y)

Representation of Ã Ã =
⋃

𝛼∈[0,1]
𝛼∕Ã𝛼 = sup

𝛼∈[0,1]
[𝛼∕Ã𝛼] Ã =

⋃
z∈[0,1]

Z̃z = sup
z∈[0,1]

[Z̃z]
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2.4.2 Set-Theoretic Operations

All operations that have been developed for IT2 FSs can be applied to GT2 FSs,
but for each of their 𝛼-level T2 FSs e.g., Liu (2008); Mendel et al. (2009); Wagner
and Hagras (2010); Zhai and Mendel (2011b). This is a direct consequence of the
𝛼-plane (zSlice) representation for a GT2 FS.

Consider two GT2 FSs Ã and B̃, where Ã is defined in Eq. (2.80) and

⎧⎪⎨⎪⎩
B̃ = ∫∀x∈X

𝜇B̃ (x) ∕x =∫∀x∈X

[
∫∀w∈Jw

x

gx (w) ∕w

]/
x

Jw
x = {(x,w) ∶ ∀w ∈ [LMFFOU(B̃)(x),UMFFOU(B̃)(x)]} ⊆ [0, 1]

(2.91)

THEOREM 2.5 Let (Ã ∪ B̃)𝛼 and (Ã ∩ B̃)𝛼 be the 𝛼-planes of Ã ∪ B̃ and Ã ∩ B̃,
respectively (Mendel et al., 2009); then

Ã ∪ B̃ =
⋃

𝛼∈[0,1]
𝛼∕(Ã ∪ B̃)𝛼 =

⋃
𝛼∈[0,1]

𝛼∕Ã𝛼 ∪ B̃𝛼 (2.92)

Ã ∩ B̃ =
⋃

𝛼∈[0,1]
𝛼∕(Ã ∩ B̃)𝛼 =

⋃
𝛼∈[0,1]

𝛼∕Ã𝛼 ∩ B̃𝛼 (2.93)

Proof. The proof of Eq. (2.92) can be found in Appendix A of Mendel et al. (2009).
In that proof it is demonstrated that, because Ã𝛼 and B̃𝛼 are interval-valued sets, the
calculations of Ã𝛼 ∪ B̃𝛼 [and Ã𝛼 ∩ B̃𝛼] only involve interval arithmetic and, in fact,
reduce to the same computations that already exist for the union (and intersection)
of IT2 FSs.The proof of Eq. (2.93) is similar to the proof of Eq. (2.92). In retrospect,
these results are intuitively obvious.

To compute, for example, Ã𝛼 ∪ B̃𝛼, for each value of 𝛼:

1. Determine LMF(Ã𝛼), UMF(Ã𝛼), LMF(B̃𝛼), and UMF(B̃𝛼).
2. Compute Ã𝛼 ∪ B̃𝛼 = [LMF(Ã𝛼 ∪ B̃𝛼),UMF(Ã𝛼 ∪ B̃𝛼)], using Eq. (2.46).

Example 2.13 Figure 2.17a depicts Ã𝛼 and B̃𝛼 as well as their lower and upper
MFs (Mendel et al. 2009). Once the two 𝛼-planes are drawn, it is a relatively
simple matter to draw the 𝛼-plane of Ã𝛼 ∪ B̃𝛼 . Just take the maximum value of
UMF(Ã𝛼) and UMF(B̃𝛼) to find UMF(Ã𝛼 ∪ B̃𝛼). Similarly, take the maximum value
of LMF(Ã𝛼) and LMF(B̃𝛼) to find LMF(Ã𝛼 ∪ B̃𝛼). These lower and upper MFs, as
well as the 𝛼-plane (Ã ∪ B̃)𝛼 = Ã𝛼 ∪ B̃𝛼, are shown in Fig. 2.17b.
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Figure 2.17 (a) 𝛼-planes Ã𝛼 (lightly shaded) and B̃𝛼(darkly shaded). (b) Their union (the
outlined region) (Mendel et al., 2009; © 2009, IEEE). Note that in (a) the dotted curves
indicate the portions of Ã𝛼 that lie behind B̃𝛼 .

Instead of expressing Ã ∪ B̃ and Ã ∩ B̃ in terms of 𝛼-planes, they can also be
expressed as the union of their vertical slices. The vertical slices of Ã ∩ B̃ are called
the meet, whereas the vertical slices of Ã ∩ B̃ are called the join. Formulas for
the meet and join can also be obtained directly by using the extension principle
(Mendel, 2001; Karnik and Mendel, 2001b).

2.4.3 Centroid of a GT2 FS

Just as set-theoretic operations for GT2 FSs can be computed one 𝛼-plane at a time,
and then aggregated by means of the fuzzy union over all values of 𝛼, so can the
centroid of a GT2 FS be computed.
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THEOREM 2.6 The centroid of GT2 FS Ã (Liu, 2008), CÃ(x), is a T1 FS that can
be computed using the 𝛼-plane representation of Ã, that is,

CÃ(x) =
⋃

𝛼∈[0,1]
CRÃ𝛼

(x) =
⋃

𝛼∈[0,1]
𝛼∕[cl(RÃ𝛼

), cr(RÃ𝛼
)] ≡ ⋃

𝛼∈[0,1]
𝛼∕[cl(𝛼), cr(𝛼)]

(2.94)
where CRÃ𝛼

(x) is the centroid of the 𝛼-level T2 FS RÃ𝛼
.

Proof. Obvious from the 𝛼-plane representation of Ã that is given in Eq. (2.173).

A procedure for computing CÃ(x) is (Mendel et al. 2009):

1. Decide on howmany 𝛼-planeswill be used,where 𝛼 ∈ [0, 1]. Call that number
k; its choice will depend on the accuracy that is required.

2. For each 𝛼, compute Ã𝛼.

3. Compute cl(𝛼) and cr(𝛼) using two EKM algorithms (Table 2.4) or EIASC
algorithms (Table 2.5). The accuracy of these results will depend upon the
discretization of the primary variable.

4. Repeat steps 2 and 3 for the k values of 𝛼 chosen in step 1.

5. Bring all of the k CRÃ𝛼
(x) together using Eq. (2.94) to obtain CÃ(x).

If parallel processing is available, all of this can be performed using 2k proces-
sors; however this five-step procedure does not make use of the additional infor-
mation that is available about the secondary MFs of a GT2 FS.

Zhai and Mendel (2011a) developed centroid-flow algorithms (CFAs). To
begin, the centroid of the 𝛼 = 0 plane is computed using EKM algorithms, and
then that centroid is propagated up to the next 𝛼-level T2 FS using formulas
called centroid-flow equations. In order to reduce the accumulation of errors that
can occur during this propagation procedure, they improved these algorithms in
enhanced centroid-flow algorithms (Zhai and Mendel, 2012), which start at the
𝛼 = 1∕2 level T2 FS and then move upward (downward) to the 𝛼 = 1 (𝛼 = 0) level
T2 FS. This reduces the error accumulation by 50%, which may be adequate for
practical applications.

Yeh et al. (2011) compute the centroid of the 𝛼 = 1 level T2 FS using EKM
algorithms that are initialized as indicated in Table 2.4 and then that centroid is
used to better initialize the EKM algorithms for the computation of the centroid of
the 𝛼 = 1− 𝛿 level T2 FS, after which those results are used to better initialize the
EKM algorithms for the computation of the centroid of the 𝛼 = 1− 2𝛿 level T2 FS,
and so forth, until the last centroid is computed for the 𝛼 = 0 level T2 FS. A reason
for beginning with the 𝛼 = 1 level T2 FS, instead of with the 𝛼 = 0 level T2 FS, is
that when secondary MFs are all triangles, then the FOU of the 𝛼 = 1 level T2 FS
is a T1 FS, and so one does not need to use EKM algorithms to compute the center
of gravity (COG) of that function.
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Both of these flow algorithms achieve a 70% reduction in computation time over
using EKM algorithms for each 𝛼-level T2 FS.

Linda and Manic’s (2012) monotone centroid-flow algorithms (MCFAs) do
not require any EKM algorithms and are to date the fastest way to compute the
centroid of a GT2 FS. The MCFAs start with the 𝛼 = 1 level T2 FS so as to use the
exact COG calculation when all secondary MFs are triangles, or an approximate
COG calculation if all secondary MFs are trapezoids. For the latter, they compute
the COG of the average value of the lower and upper MFs (Nie and Tan, 2008).
They then move down to the 𝛼 = 1− 𝛿 level T2 FS but do not use the EKM
algorithms at that plane. Instead, they return to fundamentals by focusing on
the structure of the solutions in Eqs. (2.66) and (2.67) but for the 𝛼 = 1− 𝛿 level
T2 FS.

For triangle and trapezoidal secondary MFs [the MCFAs can also be applied
to other secondary MFs; see Linda and Manic (2012) for details], the centroid is
known to be an increasing function of 𝛼, as 𝛼 goes from 𝛼 = 1 to 𝛼 = 0 (Mendel
et al., 2009; Linda and Manic, 2012). This means that if the centroid at 𝛼 = 𝛼′ is
[cl(𝛼

′), cr(𝛼
′)], then the centroid at 𝛼 = 𝛼′ − 𝛿, [cl(𝛼

′ − 𝛿), cr(𝛼
′ − 𝛿)], satisfies the

following containment property:

[cl(𝛼′), cr(𝛼′)] ⊂ [cl(𝛼′ − 𝛿), cr(𝛼′ − 𝛿)] (2.95)

which means that

cl(𝛼′ − 𝛿) < cl(𝛼′) and cr(𝛼′ − 𝛿) > cr(𝛼′) (2.96)

By using Eqs. (2.95), (2.96), (2.66), and (2.67), it is easy to find the switch points
L(𝛼′ − 𝛿) and R(𝛼′ − 𝛿) from switch points L(𝛼′) and R(𝛼′) just by using arithmetic.
By starting with cl(𝛼

′) in Eq (2.66) and changing L(𝛼′) to L(𝛼′)− k (k= 1, … ),
one stops at the first value of k that violates cl(𝛼

′ − 𝛿)< cl(𝛼
′), that is, the first

value of k for which cl(𝛼
′ − 𝛿)> cl(𝛼

′); and, by starting with cr(𝛼
′) in Eq. (2.67)

and changing R(𝛼′) to R(𝛼′)+ k (k= 1, … ), one stops at the first value of k that
violates cr(𝛼

′ − 𝛿)> cr(𝛼
′), that is, the first value of k for which cr(𝛼

′ − 𝛿)< cr(𝛼
′).

For each 𝛼-level T2 FS, Linda and Manic (2012) are in effect using the EIASC
(Table 2.5).

Example 2.14 Shown in Fig. 2.18a is FOU(Ã) for which UMFFOU(Ã)(x) and
LMFFOU(Ã)(x) are each the maximum of two piecewise linear functions (Mendel
et al., 2009). This FOU is representative of one that might be obtained by
computing the union of two fired-rule output sets in a GT2 FLC, and

UMFFOU(Ã)(x) =max

⎧⎪⎨⎪⎩
⎡⎢⎢⎣
(x − 1) ∕2 1 ≤ x ≤ 3
(7 − x)∕4 3 ≤ x ≤ 7
0 otherwise

⎤⎥⎥⎦ ,
⎡⎢⎢⎣
(x − 2) ∕5 2 ≤ x ≤ 6
(16 − 2x)∕5 6 ≤ x ≤ 8
0 otherwise

⎤⎥⎥⎦
⎫⎪⎬⎪⎭

(2.97)
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Figure 2.18 (a) FOU for Example 2.14. (b) Secondary MFs at x= 2 for five values of w
(Mendel et al., 2009; © 2009, IEEE).

LMFFOU(Ã)(x) =max

⎧⎪⎨⎪⎩
⎡⎢⎢⎣
(x − 1) ∕6 1 ≤ x ≤ 4
(7 − x)∕6 4 ≤ x ≤ 7
0 otherwise

⎤⎥⎥⎦ ,
⎡⎢⎢⎣
(x − 3) ∕6 3 ≤ x ≤ 5
(8 − x)∕9 5 ≤ x ≤ 8
0 otherwise

⎤⎥⎥⎦
⎫⎪⎬⎪⎭

(2.98)
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Figure 2.19 CÃ(x) for Example 2.14 when w= 0, 0.25, 0.50, 0.75, 1 (Mendel et al., 2009;
© 2009, IEEE).

In this example, each secondary MF is chosen to be a triangle of height 1 whose
base equals UMFFOU(Ã)(x) − LMFFOU(Ã)(x) and whose apex location, Apex(x), is
parameterized as

Apex(x) = LMFFOU(Ã)(x) + w[UMFFOU(Ã)(x) − LMFFOU(Ã)(x)] (2.99)

where w= 0, 0.25, 0.5, 0.75, 1. These secondary MFs are depicted in Fig. 2.18b
when x= 2; so, Ã is defined by Eqs. (2.97)–(2.99).

The centroids of Ã, which are T1 FSs, are depicted in Fig. 2.19 for the five values
of w. Note that when 𝛼 = 0, CRÃ0

(x) = [3.6605, 4.9917], and this is the support of

all five centroids. Each of the centroids in Fig. 2.19 looks symmetrical; however,
they are not exactly symmetrical.

2.5 WRAPUP

It is worthwhile to step back and consider the uncertainty models provided by the
three kinds of fuzzy sets that have been discussed in this chapter. It is these uncer-
tainty models that make the fundamental difference between the different kinds of
FLCs, and it is these uncertainty models that will generally drive the selection of a
specific kind of FLC for a given application.

In aT1 FLC, the degrees of its T1 FSmemberships are specified as crisp numbers
that belong to the interval [0, 1]. In a GT2 FLC, the degrees of its GT2 FS member-
ships are themselves fuzzy where each is specified as a T1 FS—a secondary MF.
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Figure 2.20 Secondary MFs at x= x′ for (a) T1 FS, (b) IT2 FS, and (c) GT2 FS.

When the secondary MF is always equal to 1, then each GT2 FS reduces to an IT2
FS, and the GT2 FLC reduces to an IT2 FLC.

Traditionally, a T1 FS is not visualized in three dimensions, whereas GT2 and
IT2 FSs are (although only the FOU is needed for the latter). In order to level the
playing field for these three kinds of FSs, it is also possible to visualize a T1 FS
in three dimensions. This is easy to do by treating a T1 FS as an IT2 FS whose
lower and upper MFs are the same, and whose secondary grades are all equal to
1. The three kinds of secondary membership functions for these three kinds of FSs
are depicted in Fig. 2.20 at one specific value of the primary membership, x= x′.

Observe that for a T1 FS (Fig. 2.20a) the primary membership at x= x′ has only
one value, a, for which the secondary grade equals 1; hence, in a T1 FS, for each x
value there is no uncertainty associated with the primary membership value. For an
IT2 FS (Fig. 2.20b), the primary membership at x= x′ has values within the interval
[a, b], where each point in this interval has a secondary membership equal to 1. As
such, an IT2 FS encompasses a large amount of uncertainty that is spread evenly
over the interval [a, b]. Finally, for a GT2 FS (Fig. 2.20c), the primary membership
at x= x′ again has values within the interval [a, b], but now each point in this inter-
val can have a different secondary membership. This means the uncertainty that is
associated with a GT2 FS, UGT2, lies somewhere between the uncertainty of a T1
FS, UT1 and an IT2 FS, UIT2, that is,

UT1 ≤ UGT2 ≤ UIT2 (2.100)
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It appears, therefore, that using a GT2 FS will provide the most flexibility for mod-
eling MF uncertainty.

While it is clear that there is a difference in the amount of uncertainty associated
with the three kinds of FSs, it is still a very challenging problem to determine how
to make the best use of the different FS’s abilities to model real-world uncertainties.
This challenge is particularly noteworthy in the context of designing an FLC, that
is, should it be T1, IT2 or a GT2 FLC? And, is the hoped-for improvement in
performance by either an IT2 or GT2 FLC worth their additional complexities?
These questions can only be answered in the context of a specific application, and
some of them are explored in the rest of this book.

2.6 MOVING ON

The background materials that you have just covered in this chapter will be used
extensively in the rest of this book. In the next chapter they will all be used to obtain
mathematical descriptions of Mamdani and TSK FLCs.



CHAPTER 3

Interval Type-2 Fuzzy Logic Controllers

3.1 INTRODUCTION

This chapter begins with short reviews of T1 Mamdani and TSK FLCs in Section
3.2 so as to set the stage for the complete descriptions of IT2 Mamdani and TSK
FLCs that are given in Section 3.3. The Wu–Mendel uncertainty bounds, which
have let IT2 Mamdani FLCs run in real time, are given in Section 3.4 (their deriva-
tions are included in Appendix 3A). Brief discussions about control performance
for IT2 FLCs are given in Section 3.5. Two ways to determine FOU parameters of
IT2 FLCs are described in Section 3.6.

3.2 TYPE-1 FUZZY LOGIC CONTROLLERS

3.2.1 Introduction1

Because our derivations of equations for an IT2 FLC in Section 3.3 use the
equations for a T1 FLC, we provide a brief review of the latter here. As noted in
Chapter 1, there are two major architectures for a T1 and T2 FLC, Mamdani and
TSK. Both are reviewed in this section.

A generic T1 FLC is depicted in Fig. 3.1. In general, this FLC has p inputs
x1 ∈X1,… , xp ∈Xp, [x≡ col(x1,… , xp)] and one output2 u(x)∈U, and is charac-
terized by M rules. For a T1 Mamdani FLC, the sth rule has the form

Rs
M∶ If x1 is Fs

1
and · · · and xp is Fs

p, then u(x) is Gs s = 1, … ,M (3.1)

For a T1 TSK FLC, the sth rule has the form

Rs
TSK

∶ If x1 is Fs
1

and · · · and xp is Fs
p, then us(x) is gs(x1, … , xp) s = 1, … ,M

(3.2)
The most common function used for gs(x1,… , xp) is linear in x1,… , and xp, that is,

1Some of the material in this section has been taken from Mendel et al. (2006; © 2006, IEEE).
2In this chapter u(x) and u are often used interchangeably, especially in derivations where it is not

necessary to show the explicit dependence of u on x.

Introduction to Type-2 Fuzzy Logic Control: Theory and Applications, First Edition.

Jerry M. Mendel, Hani Hagras, Woei-Wan Tan, William W. Melek, and Hao Ying.

© 2014 by The Institute of Electrical and Electronics Engineers, Inc. Published 2014 by John Wiley & Sons, Inc.
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Figure 3.1 Type 1 FLC (Mendel et al., 2006; © 2006, IEEE).

us(x) = cs
0
+ cs

1
x1 + ⋅ ⋅ ⋅ + cspxp (3.3)

In the rest of this section we explain what the computations are going from the
input x to the crisp controller output u(x) for both T1 Mamdani and TSK FLCs.

3.2.2 T1 Mamdani FLCs

The rule in Eq. (3.1) represents a T1 fuzzy relation between the input space
X1 × · · · ×Xp and the output space, U, of the FLC. In the inference engine block
of Fig. 3.1, fuzzy logic principles are used to combine fuzzy if–then rules from
the fuzzy rule base into a mapping from T1 fuzzy input sets in X1 × · · · ×Xp to
T1 fuzzy output sets in U. Each rule is interpreted as a fuzzy implication. With
reference to Eq. (3.1), let Fs

1
× · · · × Fs

p ≡ As; then, Eq. (3.1) can be reexpressed as

Rs
M∶ Fs

1
× · · · × Fs

p → Gs = As → Gs s = 1, … ,M (3.4)

Rule Rs
M is described by the MF 𝜇Rs

M
(x, u), where

𝜇Rs
M
(x, u) = 𝜇As→Gs(x, u) (3.5)

and x= (x1, … , xp)T. Consequently, 𝜇Rs
M
(x, u) = 𝜇RsM

(x1, … , xp, u) and

𝜇Rs
M
(x, u) = 𝜇As→Gs(x, u) = 𝜇Fs

1
×···×Fs

p→Gs(x, u) = 𝜇Fs
1
×···×Fs

p
(x) ⋆ 𝜇Gs(u)

= 𝜇Fs
1
(x1) ⋆ · · · ⋆ 𝜇Fs

p
(xp) ⋆ 𝜇Gs(u) = [Tp

m=1
𝜇Fs

m
(xm)] ⋆ 𝜇Gs(u) (3.6)

where it has been assumed that Mamdani implication (see Example 2.6) is used,
multiple antecedents are connected by and (i.e., by t-norms) and T is short for a
t-norm.

The p-dimensional input to Rs
M is given by the T1 fuzzy set Ax whose MF is that

of a fuzzy Cartesian product, that is,

𝜇Ax
(x) = 𝜇X1

(x1) ⋆ · · · ⋆ 𝜇Xp
(xp) = Tp

m=1
𝜇Xm

(xm) (3.7)
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Each rule Rs
M determines a T1 fuzzy set Bs = Ax∘Rs

M in U such that when one
uses the sup-star composition in Eq. (2.20), one obtains (s = 1,… ,M):

𝜇Bs(u) = 𝜇Ax∘Rs
M
(u) = sup

x∈X
[𝜇Ax

(x) ⋆ 𝜇As→Gs(x, u)] u ∈ U (3.8)

This equation is the input–output relationship in Fig. 3.1 between the T1 fuzzy sets
that excite the sth rule and the T1 fuzzy set at the output of that rule.

Substituting Eqs. (3.6) and (3.7) into Eq. (3.8), we see that

𝜇Bs(u) = sup
x∈X

[𝜇Ax
(x) ⋆ 𝜇As→Gs(x, u)]

= sup
x∈X

[Tp
m=1

𝜇Xm
(xm) ⋆ [Tp

m=1
𝜇Fs

m
(xm)] ⋆ 𝜇Gs(u)]

= sup
x∈X

{[Tp
m=1

𝜇Xm
(xm) ⋆ 𝜇Fs

m
(xm)] ⋆ 𝜇Gs(u)}

=

⎧⎪⎪⎨⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣
sup

x1∈X1

𝜇X1
(x1) ⋆ 𝜇Fs

1
(x1)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜇Qs

1
(x1)

⎤⎥⎥⎥⎥⎥⎦
⋆ · · · ⋆

⎡⎢⎢⎢⎢⎢⎣
sup

xp∈Xp

𝜇Xp
(xp) ⋆ 𝜇Fs

p
(xp)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜇Qsp

(xp)

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭
⋆ 𝜇Gs(u) u ∈ U (3.9)

The inputs to a T1 FLC can be a type-0 (i.e., crisp input) or a T1 FS, where, as
mentioned below Eq. (2.21), the former is commonly referred to as a singleton
input, with associated singleton fuzzification (SF), and the latter is commonly
referred to as a nonsingleton input, with associated nonsingleton fuzzification
(NSF). For a singleton input,

𝜇Xi
(xi) =

{
1 xi = x′i
0 xi ≠ x′i and ∀xi ∈ Xi

(3.10)

Substituting Eq. (3.10) into Eq. (3.9) for SF, Eq. (3.9) can be expressed for both SF
and NSF, as (s = 1,… ,M)

𝜇Bs(u) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

[
Tp

m=1
𝜇Fs

m

(
x′m

)]
⋆ 𝜇Gs(u) = f s(x) ⋆ 𝜇Gs(u) SF

⎡⎢⎢⎢⎢⎣
Tp

m=1

⎛⎜⎜⎜⎜⎝
sup

xm∈Xm

𝜇Xm
(xm) ⋆ 𝜇Fs

m
(xm)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜇Qsm

(xm)

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦
⋆ 𝜇Gs(u) = f s(x) ⋆ 𝜇Gs(u) NSF

(3.11)
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In Eq. (3.11) fs(x′) is called the firing level for the sth rule. What distinguishes
NSF from SF is a more complicated way to compute its firing level. For NSF we
must calculate supxm∈Xm

𝜇Xm
(xm) ⋆ 𝜇Fs

m
(xm), that is, we must first find xsm,max, where3

xsm,max = arg sup
xm∈Xm

𝜇Xm
(xm) ⋆ 𝜇Fs

m
(xm)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜇Qsm

(xm)

(3.12)

and then determine 𝜇Qs
m
(xsm,max) = 𝜇Xm

(xsm,max) ⋆ 𝜇Fs
m
(xsm,max). This can be done

once MF formulas are specified for 𝜇Xm
(xm) and 𝜇Fs

m
(xm) (e.g., Mendel, 2001,

Chapter 6). In this book (except for Section 7.2.3) we focus exclusively on
singleton fuzzification because to date it is the only kind of fuzzification that is
used in a real-world FLC.

As is well known, going from the fired rule output FSs in Eq. (3.11) to a number
can be accomplished by means of defuzzification (Fig. 3.1) in many different ways,
including4: (1) centroid defuzzification, where first the fired output FSs are unioned
(using themaximum t-conorm) and then the centroid (center of gravity) of the union
is computed; and (2) center-of-sets defuzzification, where the centroid of each of
the fired rule output FSs are used in a different kind of centroid calculation.

When centroid defuzzification is used, then the output of the T1 Mamdani FLC
can be expressed as

uM,1(x) =
∑N

i=1 ui𝜇B(ui)∑N
i=1 𝜇B(ui)

(3.13)

where

B =
M⋃
s=1

Bs (3.14)

In Eq. (3.13) 𝜇B(ui) denotes a sampled value of 𝜇B(u) and N denotes the number of
sampled values that are used to compute the COG of B.

When center-of-sets defuzzification is used, then the output of the T1 Mamdani
FLC can be expressed as

uM,1(x) =
∑M

s=1 f s(x)us∑M
s=1 f s(x)

(3.15)

where us is the COG of the sth consequent fuzzy set Gsand M denotes the total
number of rules.

Regardless of which defuzzification method is chosen, this now completes the
chain of calculations for the T1 Mamdani FLC in Fig. 3.1.

3In Eq. (3.12) (as well as in other places in this book), “arg” means the value of xm that is associated

with performing the supremum operation. In Eq. (3.12) that value is called xsm,max.
4Other defuzzification methods such as maximum and mean of maxima could also be used; however,

in actual applications of an FLC, such defuzzification methods are rarely used.
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Example 3.1 Here we consider pictorial descriptions of Eqs. (3.11), (3.14), and
(3.13) for SF and the minimum t-norm (Mendel 2001). We do this because FLC
designers are all familiar with such pictorial descriptions for a T1 FLC since they
provide themwith a good understanding of some of the operations of such a system.
We also do this because we will provide comparable pictorial descriptions for T2
FLCs in Section 3.3, which can then be contrasted with the figures of this example
to better understand the flow of uncertainties through a T2 FLC.

Figure 3.2 depicts input and antecedent operations [the terms in the bracket in
the top equation (3.11)] for a two-antecedent–single-consequent rule. The firing
level is a number equal to f s(x′) = min[𝜇Fs

1
(x′

1
), 𝜇Fs

2
(x′

2
)]. Observe, for example, that

𝜇Fs
1
(x′

1
) occurs at the intersection of the vertical line at x′

1
with 𝜇Fs

1
(x1). The firing

level is then t-normed with the entire consequent set for the sth rule, that is, 𝜇Bs(u) =
min[f s(x′), 𝜇Gs(u)], the result being the clipped triangle,which is a trapezoid,which
is shown at the far right of this figure.

1

1

1

u

μF1
s(x1)

μF1
s(x1′)

μF2
s(x2)

μF2
s(x2′)

μGs(u)

μBs(u)

x1′

x2′
x2

x1

min
fs(x′)

Figure 3.2 Pictorial description of input, antecedent, and consequent operations for one
rule that has two antecedents, in a T1 Mamdani FLC with singleton fuzzification and mini-
mum t-norm (Mendel, 2007; © 2007, IEEE).
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(a)

(c) (d)

(b)

1 1

1 1

f1(x′)

f1(x′)

f2(x′)

f2(x′)

u

u u

u

μG1 (u) μG2 (u)

μB1 (u)

μB (u)
μB (u)

μB2 (u)

uCOG = uM,1 (x)

Figure 3.3 Pictorial description of (a), (b) consequent operations for two fired rules, (c)
union of the two fired-rule output sets, and (d) defuzzified output.

Figures 3.3a and 3.3b depict 𝜇Bs(u) for two fired rules (s= 1, 2). They are each
obtained as in Fig. 3.2. In Fig. 3.3c, the T1 FS B = ∪2

s=1
Bs = max[𝜇B1(u), 𝜇B2 (u)]

is constructed for ∀ u∈U. The result is the piecewise linear MF 𝜇B(u). The COG
of 𝜇B(u), that is, Eq. (3.13), is shown in Fig. 3.3d.

We leave it to the reader to draw comparable figures for when the product t-norm
is used in Eq. (3.11).

3.2.3 T1 TSK FLCs

Observe in Eq. (3.2) that membership functions are only associated with a TSK
rule’s antecedents; there is no consequent membership function; that is, the T1 TSK
rule’s consequent is an algebraic function of the p antecedent values. Hence, the rule
also acts as the inference mechanism for a T1 TSK FLC. This means that it is not
necessary to use the sup-star composition to obtain the output of a fired T1 TSK
rule, which is quite different than what happens in a T1 singleton Mamdani FLC.
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In this book we focus exclusively on a TSK rule whose consequent function is
the linear one that is given in Eq. (3.3).The output, uTSK,1(x), of such aT1TSK FLC
is obtained by combining the outputs from the M rules in the following prescribed
way:

uTSK,1(x) ≡
∑M

s=1 f s(x)us(x)∑M
s=1 f s(x)

=
∑M

s=1 f s(x)(cs
0
+ cs

1
x1 + cs

2
x2 + · · · + cspxp)∑M

s=1 f s(x)
(3.16)

where the fs(x) are rule firing levels (strengths), defined as

f s(x) ≡ Tp
k=1

𝜇Fs
k
(xk) (3.17)

in which T again denotes a t-norm, usually minimum or product. In Eqs. (3.16) and
(3.17), x denotes a specific input that is applied to the T1 TSK FLC.5

The T1 TSK FLC defined by Eqs. (3.16) and (3.17) is sometimes referred to as a
normalized T1 TSK FLC because of the normalization of the weighted rule outputs
in Eq. (3.16) by

∑M
s=1 f s(x). An unnormalized T1 TSK FLC (Tanaka et al., 1995;

Tanaka and Sugeno, 1998) has for its output

uTSK,1(x) ≡
M∑
s=1

f s(x)us(x) (3.18)

Note that in Eq. (3.16) when us(x) = cs
0

then uTSK,1(x) is exactly the same as
uM,1(x) in Eq. (3.13). In this case it does not matter whether we call the T1 FLC
TSK or Mamdani.

3.2.4 Design of T1 FLCs

In Section 3.6 we will describe how to complete the designs of IT2 FLCs. Since
those FLCs are extensions of T1 FLCs from T1 FSs to IT2 FSs, we mention
here that by “design” we mean the specification of such things as choice of the
antecedents, number of terms/FSs used for each variable (antecedent in a rule),
the shapes of the MFs for antecedents and consequents, the parameters that
completely define each MF, number of rules, t-norm, and defuzzification method.
Our emphasis will be on how to determine MF parameters.

3.3 INTERVAL TYPE-2 FUZZY LOGIC CONTROLLERS

3.3.1 Introduction

A general T2 FLC is depicted in Fig. 3.4. It is very similar to the T1 FLC in
Fig. 3.1, the major structural difference being that the defuzzifier block of a T1

5Because no inference mechanism is associated with the statements of Eqs. (3.16) and (3.17), the issue

of fuzzification does not appear. Hence, unlike Section 3.2.2, where we used x′ to denote the measured

value of input x, no such distinction needs to be made between x and x′ for a T1 TSK FLC.
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Type 2 FLC

Type-reduced set

T1 FS

Output processing

Rules

Type reducer

T2 fuzzy input
sets

T2 fuzzy output
sets

Fuzzifier

Inference
engine

Measured crisp
inputs

Defuzzifier
Crisp outputs

x

u

u = f(x)

Figure 3.4 Type 2 FLC (Mendel et al., 2006; © 2006, IEEE).

FLS is replaced by the Output-processing block in a T2 FLC. That block consists
of type reduction followed by defuzzification. Type reduction (TR) maps a T2 FS
into aT1 FS, and then defuzzification, as usual, maps thatT1 FS into a crisp number.

As for a T1 FLC, there are two major architectures for an IT2 FLC, Mamdani
and TSK. Both are covered in this Section.

3.3.2 IT2 Mamdani FLCs

In the T1 case, we have Mamdani rules of the form stated in Eq. (3.1). The dis-
tinction between T1 and T2 is associated with the nature of the MFs, which is not
important when forming the rules. The structure of the rules remains exactly the
same in the T2 case, but now some or all of the FSs involved are T2. As for a T1
FLC, the T2 FLC has p inputs x1 ∈X1,… , xp ∈Xp, and one output and is charac-
terized by M rules, where the sth rule now has the form

Rs∶ IF x1 is F̃s
1

and · · · and xp is F̃s
p,THEN u is G̃s s = 1, … ,M (3.19)

Here we assume that all the antecedent and consequent fuzzy sets in Mamdani rules
are T2; however, this need not necessarily be the case in practice. All results remain
valid as long as just one FS is T2. This means that a FLC is T2 as long as any one
of its antecedent or consequent (or input) FSs is T2.

When some or all of the antecedent and consequent T2 FSs are IT2 FSs, then
we call the resulting T2 Mamdani FLC an interval T2 FLC (IT2 FLC). These are
the FLCs that are focused on in this section.

Instead of using operations and associated mathematics that have been devel-
oped for generalT2 FSs,we shall develop all of the results below usingT1 FSmath-
ematics, along the same lines as has already been done in the proof of Theorem 2.3.

3.3.2.1 Single-Antecedent Rule6 In order to see the forest from the trees, so
to speak, we shall focus initially on a single rule (i.e., s= 1) that has one antecedent

6Much of the materials in Sections 3.3.2.1–3.3.2.3 are taken from Mendel et al. 2006; © 2006, IEEE).
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and that is activated by a crisp number (i.e., singleton fuzzification—SF), after
which we shall show how those results can be extended first tomultiple antecedents,
and then to multiple rules.

In the rule7

IF x1 is F̃1,THEN u is G̃ (3.20)

let F̃1 be an IT2 FS in the discrete universe of discourse X1d for the antecedent,
and G̃ be an IT2 FS in the discrete universe of discourse Ud for the consequent.

Decompose F̃1 into nF1
-embedded IT2 FSs F̃j1

1e (j1 = 1, … , nF1
), whose domains

are the embedded T1 FSs Fj1
1e, and decompose G̃ into nG-embedded IT2 FSs G̃j

e

(j= 1,… , nG), whose domains are the embedded T1 FSs Gj
e. According to the

wavy-slice representation Theorem 2.2 and Corollary 2.1, it follows that F̃1 and
G̃ can be expressed as

F̃1 =
nF1∑
j1=1

F̃j1
1e = 1∕FOU(F̃1) (3.21)

where

FOU(F̃1) =
nF1∑
j1=1

Fj1
1e =

nF1∑
j1=1

Nx1∑
i=1

uj1
1i∕x1i uj1

1i ∈ Ju
x1i

⊆ Ud = {0, … , 1} (3.22)

and

G̃ =
nG∑
j=1

G̃j
e = 1∕FOU(G̃) (3.23)

where

FOU(G̃) =
nG∑
j=1

Gj
e =

nG∑
j=1

Nu∑
k=1

wj
k∕uk wj

k ∈ J𝑤
uk

⊆ Ud = {0, … , 1} (3.24)

Consequently, there are nF1
× nG possible combinations of embedded T1

antecedent and consequent FSs, so that the totality of fired output sets for all
possible combinations of these embedded T1 antecedent and consequent FSs will
be a bundle of functions FOU(B̃) as depicted in Fig. 3.5, where

FOU(B̃) ≜
nF1∑
j1=1

nG∑
j=1

𝜇B(j1,j)(u) ∀u ∈ Ud (3.25)

in which the summations denote union.

7Although it is unnecessary to use the subscript 1 on x for a single-antecedent rule, doing so will make

the multiple-antecedent case easier to understand.
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X1

F1
1e

G1
e

G1
e

μB(1,1)(u)

μB(1,nG)(u)

μB(n,F1,1)(u)
FOU (B)

μB(nF1,nG)(u)

F1e
nF

1

Ge
nG

Ge
nG

~

Figure 3.5 Fired output FSs for all possible nB = nF1
× nG combinations of the embedded

T1 antecedent and consequent FSs for a single-antecedent rule (Mendel et al., 2006; © 2006,
IEEE).

The relationship between the bundle of functions FOU(B̃) in Eq. (3.25) and the
FOU of the T2 fired output FS is summarized by the following theorem.

THEOREM 3.1 The bundle of functions FOU(B̃) in Eq. (3.25), computed using
T1 FS mathematics, is the FOU of the T2 fired output FS, B̃ = 1∕FOU(B̃), and is
given in Eqs. (3.30)–(3.32).

Proof. It follows from Fig. 3.5 that the fired output of the combination of the
j1th-embedded T1 antecedent FS and the jth-embedded T1 consequent FS can be
computed for SF using Mamdani implication as in the top line of Eq. (3.11) with p
= 1, that is,8

𝜇B(j1,j)(u) = 𝜇F
j1
1e
(x′

1
) ⋆ 𝜇Gj

e
(u) ∀u ∈ Ud (3.26)

Since for any j1 and j, 𝜇B(j1 ,j)(u) in Eq. (3.26) is bounded in [0, 1], FOU(B̃) in Eq.
(3.25) must also be a bounded function in [0, 1], which means that Eq. (3.25) can
be expressed as

FOU(B̃) ≡ {𝜇
B̃
(u), … , 𝜇B̃(u)} ∀u ∈ Ud (3.27)

a set of nF1
× nG functions, where

𝜇
B̃
(u) = inf

∀j1,j
(𝜇B(j1,j)(u)) ∀u ∈ Ud (3.28)

𝜇B̃(u) = sup
∀j1,j

(𝜇B(j1 ,j)(u)) ∀u ∈ Ud (3.29)

denote the lower-bounding and upper-bounding functions of FOU(B̃), respectively.

8In Eq. (3.11), the superscript s denotes rule number. Since we are focusing on a single rule, we don’t

use this superscript here. Our superscripts are associated with specific embedded T1 FSs.
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Recall that the upper and lower MFs for IT2 FSs are also embedded T1 FSs.
Let 𝜇F1

(x1) and 𝜇
F1

(x1) denote the embedded UMF and LMF T1 FSs associated

with F̃1, and 𝜇G(u) and 𝜇
G
(u) denote the corresponding embedded UMF and LMF

T1 FSs of G̃. From Eq. (3.26), observe that to compute the infimum of 𝜇B(j1 ,j)(u)
one needs to choose the smallest embedded T1 FS of both the antecedent and con-
sequent, namely 𝜇

F1

(x1) and 𝜇
G
(u), respectively. By doing this, one obtains the

following equation for 𝜇
B̃
(y):

𝜇
B̃
(u) = inf

∀j1,j
(𝜇B(j1 ,j)(u)) = 𝜇

F1

(x′
1
) ⋆ 𝜇

G
(u) ∀u ∈ Ud (3.30)

Similarly, to compute the supremum of 𝜇B(j1,j)(u), one needs to choose the largest
embedded T1 FS of both the antecedent and consequent, namely 𝜇F1

(x1) and 𝜇G(u),
respectively. By doing this, one obtains the following equation for 𝜇B̃(u):

𝜇B̃(u) = sup
∀j1,j

(𝜇B(j1 ,j)(u)) = 𝜇F1
(x′

1
) ⋆ 𝜇G(u) ∀u ∈ Ud (3.31)

Obviously, when the sample rate becomes infinite, the sampled universes of dis-
course X1d and Ud can be considered as the continuous universes of discourse X1

and U, respectively. In this case, FOU(B̃) contains an uncountable infinite num-
ber of elements, which will still be bounded below and above by 𝜇

B̃
(u) and 𝜇B̃(u),

respectively, where these functions are still given by the right-hand sides of Eqs.
(3.30) and (3.31) (with Ud →U), such that Eq. (3.27) can be expressed as

FOU(B̃) = [𝜇
B̃
(u), 𝜇B̃(u)] ∀u ∈ U (3.32)

which completes the proof of this theorem.

Observe, fromEqs. (3.30) and (3.31), that FOU(B̃) only uses the lower and upper
MFs of the antecedent and consequent MFs, and both of these are T1 FSs.

3.3.2.2 Multiple-Antecedent Rule Next, we extend Theorem 3.1 from one
antecedent to multiple antecedents. In the rule (3.19), let F̃1, F̃2, … , F̃p be IT2 FSs

in discrete universes of discourse X1d,X2d,… ,Xpd, respectively, and G̃ be an IT2 FS

in the discrete universe of discourse Ud. Decompose each F̃i into its nFi
(i= 1,… , p)

embedded IT2 FSs F̃ji
ie, that is,

F̃i =
nFi∑
ji=1

F̃ji
ie = 1∕FOU(F̃i) i = 1, … , p (3.33)

The domain of each F̃ji
ie is the embedded T1 FS Fji

ie. As in the preceding subsection,

G̃ is decomposed into nG-embedded IT2 FSs G̃j
e, whose domains are the embedded

T1 FSs Gj
e, respectively; so Eqs. (3.23) and (3.24) remain unchanged for this case.
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The Cartesian product of F̃1, F̃2, … , F̃p, F̃1 × F̃2 × ⋅ ⋅ ⋅ × F̃p, has
∏p

i=1
nFi

com-

binations of the embedded T1 FSs, Fji
ie. Let Fn

e denote the nth combination of these
embedded T1 FSs, that is,

Fn
e = Fj1

1e × ⋅ ⋅ ⋅ × F
jp
pe 1 ≤ n ≤

p∏
i=1

nFi
and 1 ≤ ji ≤ nFi

(3.34)

This equation requires a combinatorial mapping from (j1, j2,… , jp)→ n; however,
in the sequel we will not need to actually perform the specific mapping. All we
need is to understand that it is theoretically possible to create such a mapping. To
represent this mapping explicitly, we show (j1, j2,… , jp)→ (j1(n), j2(n),… , jp(n)),
so that Eq. (3.34) can be expressed as

Fn
e = Fj1(n)

1e × ⋅ ⋅ ⋅ × F
jp(n)
pe 1 ≤ n ≤

p∏
i=1

nFi
and 1 ≤ ji (n) ≤ nFi

(3.35)

in which case

𝜇Fn
e
(x) = Tp

m=1
𝜇Fjm(n)

me
(xm) 1 ≤ n ≤

p∏
i=1

nFi
and 1 ≤ jm(n) ≤ nFm

(3.36)

Additionally, let

nF ≡
p∏

m=1

nFm
(3.37)

With nG-embedded T1 FSs for the consequent, we obtain nF × nG combinations
of antecedent- and consequent-embedded T1 FSs, which generate the bundle of
nF × nG fired output consequent T1 FS functions, that is,

FOU(B̃) =
nF∑

n=1

nG∑
j=1

𝜇B(n,j)(u) ∀u ∈ Ud (3.38)

Observe how similar Eqs. (3.38) and (3.25) are to each other.

THEOREM 3.2 The bundle of functions FOU(B̃) in Eq. (3.38), computed using
T1 FS mathematics, is the FOU of the T2 fired output FS, B̃ = 1∕FOU(B̃), and is
given in Eqs. (3.32), (3.40), and (3.41).

Proof. The proof of this theorem is very similar to the proof of Theorem 3.1, but
in the proof of that theorem the following changes must be made:
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1. In Eq. (3.26), instead of computing 𝜇B(j1,j)(u), we must now compute 𝜇B(n,j)(u),

by using the top line of Eq. (3.11) in which Tp
m=1

𝜇Fl
m
(x′m) is replaced by Eq.

(3.36), that is,

𝜇B(n,j)(u) = [Tp
m=1

𝜇Fjm(n)
me

(x′m)] ⋆ 𝜇Gj(u) ∀u ∈ Ud (3.39)

2. Equation (3.27) is unchanged.

3. In Eqs. (3.28) and (3.29), replace the index j1 by the index n.

4. Let 𝜇Fm
(xm) and 𝜇

Fm

(xm) denote the embedded UMF and LMF T1 FSs asso-

ciated with F̃m. Note that 𝜇Fm
(xm) and 𝜇

Fm

(xm) are two of the nFm
-embedded

T1 FSs that are associated with F̃m. They will be the ones that are used in the
next step.

5. Equations (3.30) and (3.31) are changed to

𝜇
B̃
(u) = inf

∀n,j
(𝜇B(n,j)(u)) = [Tp

m=1
𝜇

Fm

(x′m)] ⋆ 𝜇
G
(u) ∀u ∈ Ud (3.40)

𝜇B̃(u) = sup
∀n,j

(𝜇B(n,j)(u)) = [Tp
m=1

𝜇Fm
(x′m)] ⋆ 𝜇G(u) ∀u ∈ Ud (3.41)

6. Equation (3.32) remains unchanged.

Once again, observe, now from Eqs. (3.40) and (3.41), that FOU(B̃) only uses
the lower and upper MFs of the p antecedent and consequent MFs, and all of these
are T1 FSs.

COROLLARY 3.1 For an IT2 FLC the firing level becomes a firing interval,
F(x′), where

F(x′) ≡ [f (x′), f (x′)] (3.42)

f (x′) ≡ Tp
m=1

𝜇
Fm

(x′m) (3.43)

f (x′) ≡ Tp
m=1

𝜇Fm
(x′m) (3.44)

Then, FOU(B̃) can be expressed in terms of the firing interval, as

FOU(B̃) = [f (x′) ⋆ 𝜇
G
(u), f (x′) ⋆ 𝜇G(u)] = F(x′) ⋆ [𝜇

G
(u), 𝜇G(u)] ∀u ∈ U

(3.45)

Proof. Equations (3.42)–(3.44) are definitions that are motivated by the structures
of the bracketed terms on the right-hand sides of Eqs. (3.40) and (3.41). Beginning
with Eq. (3.32), and substituting Eqs. (3.40) and (3.41) into it, and then using Eqs.
(3.43) and (3.44), one finds
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FOU(B̃) = [𝜇
B̃
(u), 𝜇B̃(u)] = [f (x′) ⋆ 𝜇

G
(u), f (x′) ⋆ 𝜇G(u)]

= [f (x′), f (x′)] ⋆ [𝜇
G
(u), 𝜇G(u)] (3.46)

Substituting Eq. (3.42) into this result, one obtains the right-hand side of Eq. (3.45).

3.3.2.3 Multiple Rules So far all of the derivations in Sections 3.3.2.1 and
3.3.2.2 have been for a single rule. In general, there are M rules that characterize
an IT2 FLC, and frequently more than one rule fires when input x is applied to that
system. What this means is that, as in the case of a T1 FLC, we need to include
another index—s— in all of the IT2 FLC formulas. So, for example, for the sth
rule, we would express Eqs. (3.32) and (3.40)–(3.45) as (s = 1,… ,M)

FOU(B̃s) = [𝜇
B̃s
(u), 𝜇B̃s(u)] ∀u ∈ U (3.47)

𝜇
B̃s
(u) = inf

∀n,j
(𝜇Bs(n,j)(u)) = [Tp

m=1
𝜇

Fs
m

(x′m)] ⋆ 𝜇
Gs
(u) ∀u ∈ U (3.48)

𝜇B̃s(u) = sup
∀n,j

(𝜇Bs(n,j)(u)) = [Tp
m=1

𝜇Fs
m
(x′m)] ⋆ 𝜇Gs(u) ∀u ∈ U (3.49)

Fs(x′) ≡ [f s(x′), f
s
(x′)] (3.50)

f s(x′) ≡ Tp
m=1

𝜇
Fs

m

(x′m) (3.51)

f
s
(x′) ≡ Tp

m=1
𝜇Fs

m
(x′m) (3.52)

FOU(B̃s) = [f s(x′) ⋆ 𝜇
Gs
(u), f

s
(x′) ⋆ 𝜇Gs(u)] = Fs(x′) ⋆ [𝜇

Gs
(u), 𝜇Gs(u)] ∀u ∈ U

(3.53)
As in the T1 case, fired rule sets are combined either before or as part of output

processing. For illustrative purposes only,9 let us assume that the s fired rule sets are
combined using the union operation. In this case, we have the following theorem.

THEOREM 3.3 If the s fired rule sets are combined using the union operation,
leading to a composite IT2 FS B̃, then

B̃ = 1∕FOU(B̃) (3.54)

FOU(B̃) = [𝜇
B̃
(u), 𝜇B̃(u)] ∀u ∈ U (3.55)

9We do not necessarily advocate combining IT2 FSs using the union operation, just as many people do

not advocate combining fired T1 FSs in a T1 FLC using the union operation. This is explained in great

detail in Mendel (2001) where more computationally tractable ways of blending the IT2 fired rule sets

are described. Conceptually, one merely needs to think of some final (aggregated) IT2 FS, say B̃(u) as

having been obtained from the B̃s(u).
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where
𝜇

B̃
(u) = 𝜇

B̃1
(u) ∨ 𝜇

B̃2
(u) ∨ · · · ∨ 𝜇

B̃M
(u) (3.56)

𝜇B̃(u) = 𝜇B̃1(u) ∨ 𝜇B̃2(u) ∨ · · · ∨ 𝜇B̃M (u) (3.57)

and specific formulas for 𝜇
B̃s
(u) and 𝜇B̃s(u) are given in Eqs. (3.48) and (3.49).

Proof. Equations (3.56) and (3.57) follow from M − 1 repeated applications of
Eq. (2.46) to ∪M

s=1
B̃s.

Example 3.2 This example parallels Example 3.1 and the construction of
Figs. 3.2 and 3.3. First, we consider the pictorial description of Eq. (3.53) for
the minimum t-norm. Figure 3.6 depicts input and antecedent operations for

1

1

1

μF1
s(x1)~

μF2
s(x2)~

μF1
s(x′1)~

μF2
s(x′2)~

FOU(F1
s)

~

FOU(F2
s)

~

FOU(Gs)
~

FOU(Bs)
~

μF1
s(x′1)~

x′1
x1

x′2
x2

Fired rule FS

min

u

min

μF2
s(x′2)~

fs(x′)

fs(x′)

Figure 3.6 Pictorial description of input, antecedent, and consequent operations for rule s
that has two antecedents, in an IT2 Mamdani FLC for singleton fuzzification and minimum
t-norm (Mendel, 2007; © 2007, IEEE).
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a two-antecedent single-consequent rule, SF, and minimum t-norm. The firing
interval is an interval of real numbers equal to [using Eqs. (3.50)–(3.52)]

Fs(x′) ≡ [min[𝜇
Fs

1

(x′
1
), 𝜇

Fs
2

(x′
2
)],min[𝜇Fs

1
(x′

1
), 𝜇Fs

2
(x′

2
)]] (3.58)

Observe, for example, that 𝜇
F̃s

1

(x′
1
) occurs at the intersection of the vertical line at

x′
1

with 𝜇
F̃s

1

(x1), and 𝜇F̃s
1
(x′

1
) occurs at the intersection of the vertical line at x′

1
with

𝜇F̃s
1
(x1).
The firing interval is then t-normed with the entire consequent FOU for the sth

rule [using Eq. (3.53)], that is,

FOU(B̃s) = [min(f s(x′), 𝜇
Gs
(u)),min(f

s
(x′), 𝜇Gs(u))] ∀u ∈ U (3.59)

the result being the filled-in trapezoidal area that is shown at the far right of Fig. 3.6.
Comparing Figs. 3.6 and 3.2, observe how the uncertainties about the antecedent

and consequent MFs have flowed through all of the computations, leading to
FOU(Bs).

Next, we consider the pictorial description of Eqs. (3.55)–(3.57). Figures 3.7a
and 3.7b depict FOU(B̃s) for two fired rules (s= 1, 2); they are each obtained as in
Fig. 3.6. In Fig. 3.7c

B̃ =
2⋃
s=1

B̃s = [max(𝜇
B̃1
(u), 𝜇

B̃2
(u)),max(𝜇B̃1(u), 𝜇B̃2(u))] (3.60)

and this is constructed for ∀ y∈Y. We leave it to the reader to draw comparable
figures for when the product t-norm is used.

Comparing Figs. 3.7c and 3.3c, observe how the uncertainties about each fired
rule’s FOU have flowed further into the union of those FOUs.

3.3.2.4 Output Processing With reference to the T2 FLC depicted in
Fig. 3.4, we now explain how to perform output processing. Type reduction is the
first step of output processing and defuzzification is its second step.

There are as many type reduction methods as there are T1 defuzzification meth-
ods because each of the former is associated with one of the latter. Karnik and
Mendel (2001a) [see, also, Mendel (2001, Chapter 9)] have developed centroid,
center-of-sums, height, modified-height, and center-of-sets type reducers. Here we
only explain centroid and center-of-sets type reduction because they are the most
popular ones.

Centroid Type Reduction In order to perform centroid type reduction one must
begin with an FOU. This is obtained in an IT2 FLC by aggregating the fired rules
using the union, as in Eqs. (3.55)–(3.57). Centroid type reduction is equivalent to
computing the centroid of an IT2 FS. See Section 2.3.4 for how to do this. The most
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(a)

(c)

(b)

FOU(G1)
~

FOU(B1)
~

FOU(G2)
~

FOU(B2)
~

FOU(B)
~

1 1

1

f1(x′)

f1(x′)
f2(x′)

f2(x′)
f1(x′)

f2(x′)

f2(x′)

f1(x′)

u

u

u

Figure 3.7 Pictorial description of (a), (b) consequent operations for two fired rules and
(c) union of the two fired rule output sets.

widely used algorithms for doing this are the KM or EKM algorithms. The result
from centroid type reduction is a T1 FS, UC(x), namely

UC(x) = 1∕[cl(B̃|x), cr(B̃|x)] ≡ 1∕[ul(x), ur(x)] (3.61)

The explicit dependence of UC(x) on x in Eq. (3.61) emphasizes the fact that the
type-reduced set depends on the inputs to the FLC. When x changes from one value
to another, as it will in a fuzzy logic control system—from one time point to the
next—then UC(x) also changes from one time point to the next.

Center-of-Sets (COS) Type Reduction In order to perform COS type reduc-
tion one begins with the firing intervals for the rules, Fs(x′) in Eq. (3.50) (for
s= 1,… ,M), and instead of combining them directly with their respective con-
sequent FOU they are combined with the centroid of their respective consequent
FOU during an averaging process.
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Let the centroid of G̃s be expressed as

CG̃s = 1∕[a(G̃s), b(G̃s)] ≡ 1∕[as, bs] (3.62)

where as and bs are computed using EKM algorithms. Consider the following aver-
age,which originally was called a generalized centroid (Karnik and Mendel, 2001a;
Mendel, 2001) but is now known as in interval weighted average (Mendel and
D. Wu, 2010, Chapter 5]:

UIWA(x) = 1

/
∀

us∈[as,bs]
ws∈[f s(x),f

s
(x)]

∑M
s=1 usws∑M
s=1 ws

(3.63)

Clearly,

UIWA(x) = 1∕[ul(x), ur(x)] (3.64)

where

ul(x) = min
∀ws∈[f s(x),f

s
(x)]

∑M
s=1 asws∑M
s=1 ws

(3.65)

ur(x) = max
∀ws∈[f s(x),f

s
(x)]

∑M
s=1 bsws∑M
s=1 ws

(3.66)

Comparing Eqs. (3.65) and (2.62), observe that they are identical, when 𝜃i and xi
in Eq (2.62) are equated with ws and as, respectively, in Eq. (3.65); hence, ul(x) can
be computed by applying the EKM algorithm for the left end of a centroid to Eq.
(3.65). To do this, as must first be reordered in increasing order and renumbered,
and its associated ws must then also be renumbered so that it remains associated
with its corresponding value of as. Similarly, comparing Eqs. (3.66) and (2.63),
observe that they are identical, when 𝜃i and xi in Eq. (2.63) are equated with ws
and bs, respectively, in Eq (3.66); hence, ur(x) can be computed by applying the
EKM algorithm for the right end of a centroid to Eq. (3.66). To do this, bs must
first be reordered in increasing order and renumbered, and its associated ws must
then also be renumbered so that it remains associated with its corresponding value
of bs.

Center-of-sets type reduction is equivalent to computing UIWA(x) in Eq. (3.64):
hence,

UCOS(x) = UIWA(x) (3.67)

Defuzzification After type reduction, defuzzification is very simple, that is,

u(x) = 1

2
[ul(x) + ur(x)] (3.68)



98 INTERVAL TYPE-2 FUZZY LOGIC CONTROLLERS

Upper 
FL

Lower
FL

Input

Left 
End

Right 
End

Consequent IT2 FS Centroids

Memory

Firing level (FL) Type reduction (TR) Defuzzification

Up to M

fired rules

(s = 1,…, M)

Associated

with

Fired rules

(s = 1,…, M)

AVG

Consequent
UMFs &
LMFs

Center-of-Sets
TR 

(Uses EKM 
Algorithms)

as

bs

ui(x)

ur(x)

u(x)

x

fs(x)

f s(x)

Figure 3.8 Block diagram summary of IT2 Mamdani FLC computations that use COS TR
(Mendel 2007; © 2007, IEEE).

3.3.2.5 Summaries It is very helpful to summarize all of the computations
for an IT2 Mamdani FLC. This can be done in different ways, two of which are
given next.

Block Diagram Summary The entire chain of computations is summarized in
the block diagram of Fig. 3.8. Firing intervals are computed for all rules [using Eqs.
(3.51) and (3.52)], and they depend explicitly on the input x. For COS TR, offline
computations of the centroids are performed for each of the M consequent IT2 FSs
using EKM algorithms [as in Eq. (3.62)] and are then stored in memory. COS TR
combines the firing intervals and precomputed consequent centroids and uses EKM
algorithms to perform the actual calculations [Eqs. (3.64)–(3.66), using the EKM
algorithms given in Table 2.4]. Defuzzification is the simple averaging of the two
end points of the type-reduced set [Eq. (3.68)].

Neurofuzzy Summary The entire chain of computations is also summarized in
the layered architecture of Fig. 3.9, which resembles a neural network, although
there is nothing “neural” about this FLC.10 Layer 1 refers to the inputs, x1,… , xp.

10Many variations of this figure appear in the literature (e.g., Aliev et al., 2011; Castro et al., 2009;

Juang and Tsao, 2008; Lin and Chen, 2011), none of which look the same or are described in exactly

the same way.
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Figure 3.9 Neurofuzzy summary of IT2 Mamdani FLC computations that use
COS TR.

Layer 2 iswhere the inputs are fuzzified (F) into IT2 FSs. When singleton fuzzifica-
tion is used, then Eq. (3.10) applies. Layer 3 is where the firing interval is computed
for each of the M rules [using Eqs. (3.51) and (3.52)]. Layer 4 is where TR is per-
formed and is illustrated for COS TR,11 for which centroid consequents, which
have been stored in memory, also have to be used [Eqs. (3.64)–(3.66), using the
EKM algorithms given in Table 2.4]. Layer 5 is where defuzzification is performed
[Eq. (3.68)].

3.3.2.6 Comprehensive Example This example focuses on the full opera-
tion of the IT2 Mamdani FLC for a simple FLC that implements an edge-following
behavior of an autonomous mobile robot (Fig. 1.16).

Example 3.3 The robot shown in Fig. 1.16a has two sonar sensors fixed to its
right side. The sensor attached to the front right side of the robot is called the
right front sensor (RFS) and the sensor attached to the front backside of the robot
is called the right back sensor (RBS). Both sensors are modeled using two IT2
FSs, which are Near and Far, as depicted in Fig. 3.10a and 3.10b, respectively.

11If centroid TR is used, two additional layers have to be inserted between layers 3 and 4. In the first

of these, fired rule output sets are computed for each of the M rules [using Eq. (3.53)], and in the

second of these the fired rule output sets are aggregated by means of the union operation [using Eqs

(3.55)–(3.57)].
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Figure 3.10 The IT2 FSs for: (a) RFS and (b) RBS.
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Figure 3.11 The IT2 FSs representing the steering output.

It is assumed that the robot moves at a constant speed; hence, the robot has one
output, the steering that is represented by the three linguistic labels Left, Zero,12

and Right, as depicted in Fig. 3.11.

The rule base consists of the following four rules:

R1∶ IF RFS is Near and RBS is Near,THEN steering is Left

R2∶ IF RFS is Near and RBS is Far,THEN steering is Left (3.69)

R3∶ IF RFS is Far and RBS is Near,THEN steering is Zero

R4∶ IF RFS is Far and RBS is Far,THEN steering is Right

The centroids of the corresponding rule consequents are given in Table 3.1; their
numerical values were computed as in Example 2.12.

Here we consider an input vector x′ = col(170, 240), whose components are
shown in bold face in Fig. 3.10. From that figure13 we obtain the following firing
interval components for each of the IT2 FSs:

⎧⎪⎪⎨⎪⎪⎩

[𝜇
ÑearRFS

(170) , 𝜇ÑearRFS
(170)] = [0.3, 0.8]

[𝜇
F̃arRFS

(170), 𝜇F̃arRFS
(170)] = [0.2, 0.7]

[𝜇
ÑearRBS

(240), 𝜇ÑearRBS
(240)] = [0.1, 0.6]

[𝜇
F̃arRBS

(240), 𝜇F̃arRBS
(240)] = [0.4, 0.9]

(3.70)

12You may be wondering why the FOU for Zero is not centered about 0. This was actually caused by

uncertainties in the steering output. Putting a 15% offset on the steering actuator gets the robot to move

straight ahead, due to deterioration of the steering motor and mechanisms over time. The FOU depends

on the surface on which the robot is traveling. On muddy surfaces there is a need to increase the 15%

offset for the robot to proceed straight forward; on snowy surfaces there is a need to decrease the 15%

offset for the robot to continue straight on; and on normal surfaces the 15% steering offset causes the

robot to proceed straight ahead.
13These values can also be obtained by writing formulas for the LMFs and UMFs, as would be done in

a computer simulation of the IT2 Mamdani FLC equations.
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TABLE 3.1 Rule Base and Consequents of the IT2 FLS

x2 =RBS

x1 =RFS Near Far

Near CG̃1 = [a1, b1] ≡ [−81.43,−68.57] CG̃2 = [a2, b2] ≡ [−81.43,−68.57]
Far CG̃3 = [a3, b3] ≡ [8.57, 21.42] CG̃4 = [a4, b4] ≡ [98.57, 111.42]

TABLE 3.2 Firing Intervals

Rule
Number

Firing
Interval

Rule Consequent
Centroid

R1 [f 1, f
1
] = [min(𝜇

ÑearRFS

(170), 𝜇
ÑearRBS

(240)),
min(𝜇ÑearRFS

(170), 𝜇ÑearRBS
(240))]

= [min(0.3, 0.1),min(0.8, 0.6)]
= [0.1, 0.6]

CG̃1 = [a1, b1] ≡ [−81.43,−68.57]

R2 [f 2, f
2
] = [min(𝜇

ÑearRFS

(170), 𝜇
F̃arRBS

(240)),
min(𝜇ÑearRFS

(170), 𝜇F̃arRBS
(240))]

= [min(0.3, 0.4),min(0.8, 0.9)]
= [0.3, 0.8]

CG̃2 = [a2, b2] ≡ [−81.43,−68.57]

R3 [f 3, f
3
] = [min(𝜇

F̃arRFS

(170), 𝜇
ÑearRBS

(240)),
min(𝜇F̃arRFS

(170), 𝜇ÑearRBS
(240))]

= [min(0.2, 0.1),min(0.7, 0.6)]
= [0.1, 0.6]

CG̃3 = [a3, b3] ≡ [8.57, 21.42]

R4 [f 4, f
4
] = [min(𝜇

F̃arRFS

(170), 𝜇
F̃arRBS

(240)),
min(𝜇F̃arRFS

(170), 𝜇F̃arRBS
(240))]

= [min(0.2, 0.4),min(0.7, 0.9)]
= [0.2, 0.7]

CG̃4 = [a4, b4] ≡ [98.57, 111.42]

The firing intervals for the four rules, computed using the minimum t-norm, are
shown in Table 3.2.

Using the KM algorithms, it is found that (in two iterations) L= 2 and (in
three iterations) R= 3; hence, UCOS(x′)= [ul(Steering)(x

′), ur(Steering)(x
′)], where

[observe, in Table 3.2, that ai and bi are already ordered so that (coincidentally)
a1 = a2 < a3 < a4 and b1 = b2 < b3 < b4; hence, these parameters do not have to be
reordered for their use in the EKM algorithms]

ul(Steering)(x′) =
f

1
a1 + f

2
a2 + f 3a3 + f 4a4

f
1
+ f

2
+ f 3 + f 4

= 0.6 × (−81.43) + 0.8 × (−81.43) + 0.1 × (8.57) + 0.2 × (98.57)
0.6 + 0.8 + 0.1 + 0.2

= −54.97 (3.71)
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ur(Steering)(x′) =
f 1b1 + f 2b2 + f 3b3 + f

4
b4

f 1 + f 2 + f 3 + f
4

= 0.1×(−68.57)+0.3×(−68.57) + 0.1 × (21.42) + 0.7 × (111.42)
0.1 + 0.3 + 0.1 + 0.7

= 43.92 (3.72)

Finally, the defuzzified output is uSteering(x′)= (−54.97+ 43.92)/2=− 5.52.

3.3.2.7 Novelty and Adaptiveness of an IT2 FLC In Section 1.7, it was
mentioned that T2 FLCs have a novelty that does not exist in traditional T1 FLCs,
namely (Wu, 2011) that in an IT2 FLC different membership grades from the same
IT2 FS can be used in different rules (due to an IT2 FS being described by lower
and upper MFs), whereas for traditional T1 FLC the same membership grade from
the same T1 FS is always used in different rules. In Wu (2012, p. 838) this is stated
in an equivalent way as: “Novelty, meaning that the UMF and LMF of the same
IT2 FS may be used simultaneously in computing each bound of the type-reduced
interval.” This can be seen in Eqs. (3.71) and (3.72), where, for example, f 1 is used

to compute ul(Steering)(x
′) and f

1
is used to compute ur(Steering)(x

′). From Table 3.2,

observe that LMFs are used to compute f 1, whereas UMFs are used to compute f
1
.

So this example demonstrates the truth of novelty. Wu (2012, p. 838) concludes:
“This novelty is impossible for a T1 FLC because it does not have embedded T1
FSs and the same MFs are always used in computing the firing levels of all rules.”

Wu (2012, p. 837) also states that another fundamental difference between a
T1 FLC and an IT2 FLC is adaptiveness, “meaning that the embedded T1 FSs
used to compute the bounds of the type-reduced interval change as input changes.”
Consider ur(Steering)(x

′) in Eq. (3.72) for example. It uses the firing levels f 1, f 2, f 3,

and f
4
. At another time, when x= x′′, ur(Steering)(x

′′) may depend on f
1
, f

2
, f 3, and

f 4, or on f
1
, f 2, f 3, and f 4, or on other combinations of the upper and lower values

of the firing intervals. As Wu (2012) concludes: “This adaptiveness is impossible
for a T1 FLC since it does not have embedded T1 FSs.”

3.3.3 IT2 TSK FLCs

3.3.3.1 Introduction Consider an IT2 TSK FLC having p inputs
x1 ∈X1,… , xp ∈Xp and one output u∈U. An IT2 TSK FLC is also described
by fuzzy if–then rules that represent input–output relations of a system. In a
general first-order IT2 TSK FLC with a rule base of M rules, each having p
antecedents, the sth rule can be expressed as (Liang and Mendel, 2001; Mendel,
2001, Chapter 13)
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Rs
TSK

∶IF x1 is F̃s
1

and · · · and xp is F̃s
p, THEN

Us(x) = Cs
0
+ Cs

1
x1 + Cs

2
x2 + · · · + Cs

pxp (3.73)

where s= 1,… ,M; Cs
j (j = 0, 1, … , p) are consequent T1 FSs; Us(x), the output

of the sth rule, is also a T1 FS (because it is a linear combination of T1 FSs); and F̃s
k

(k = 1, … , p) are IT2-antecedent fuzzy sets. These rules let one simultaneously
account for uncertainty about antecedent MFs and consequent parameter values.
Note that the latter is not the same as being able to account for uncertainty about a
linguistic consequent, as can be done in an IT2 Mamdani FLC.

Because the antecedents and consequent in Rs
TSK

are modeled using IT2 FSs and
T1 FSs, respectively, this kind of TSK rule is referred to as the A2–C1 case (Liang
and Mendel, 2001; Mendel, 2001, Chapter 13). It has not been used to date in an
FLC because at present it is too complicated.

When the antecedents are T2 FSs and its consequents are crisp numbers (type-0
sets), then the TSK rule is referred to as the A2–C0 case (Liang and Mendel, 2001;
Mendel, 2001, Chapter 13). This is the only case that is considered in the rest of
this section because it is the one that is used in an FLC.

In the A2–C0 case, the rules in Eq. (3.73) simplify to

Rs
A2−C0

∶ IF x1 is F̃s
1

and · · · and xp is F̃s
p, THEN

us(x) = cs
0
+ cs

1
x1 + cs

2
x2 + · · · + cspxp (3.74)

where s = 1, … , M. In the sequel, Rs
A2−C0

≡ Rs
TSK

.

3.3.3.2 IT2 TSK FLC Computations The output, uTSK,2(x′), of an IT2 TSK
FLC is obtained according to the following steps (Liang and Mendel, 2001; Mendel,
2001, Chapter 13):

1. Compute the value of each of the consequents of the A2–C0 rules, that is,
compute the numbers {us(x)}M

s=1
. Then rank-order the {us(x)}M

s=1
calling them

{𝛾k(x)}M
k=1

.

2. Compute the firing interval Fs(x) = [f s(x), f
s
(x)] for each of the M rules using

Eqs. (3.50)–(3.52). Relabel these firing intervals so that they conform to the
{𝛾k(x)}M

k=1
.

3. Compute the following interval weighted average:

UTSK(x) =
∑M

s=1 Fs(x)𝛾s(x)∑M
s=1 Fs(x)

= [ul(x), ur(x)] (3.75)

The actual computations of ul(x) and ur(x) are performed by using EKM algo-
rithms that are applied to
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ul(x) = min
f sj (x)∈[f

s(x),f
s
(x)]

s=1,… ,M

∑M
s=1 f sj (x)𝛾

s(x)∑M
s=1 f sj (x)

(3.76)

ur(x) = max
f sj (x)∈[f

s(x),f
s
(x)]

s=1,… ,M

∑M
s=1 f sj (x)𝛾

s(x)∑M
s=1 f sj (x)

(3.77)

Note that even though the same values of {𝛾s(x)}M
s=1

are used in both Eqs.
(3.76) and (3.77), the EKM algorithmswill give different values for the switch
points L and R because Eq. (3.76) is a minimization problem and Eq. (3.77)
is a maximization problem.

4. The interval [ul(x), ur(x)] is defuzzified to provide yTSK(x), where

uTSK(x) = 1∕2[ul(x) + ur(x)] (3.78)

Although there is strong similarity between these computations and the ones for
an IT2 Mamdani FLC that uses COS type reduction, there is also the following big
difference: In the IT2 Mamdani FLC the centroids of its rule-consequent IT2 FSs
are computed just once, and they are not a function of the input x; but, in the IT2
TSK FLC, the interval-valued MF of each rule’s consequent has to be recomputed
for each value of x.

3.3.4 Design of T2 FLCs

As mentioned in Section 3.2.4, Section 3.6 will describe how to complete the
designs of IT2 FLCs. By “design” is meant the specification of such things as:

1. For the IT2 Mamdani FLC: choice of the antecedents, number of terms/FSs
used for each variable (antecedent in a rule), the shapes of the FOUs for
antecedents and consequents, the parameters that completely define each
FOU, number of rules, t-norm, and type reduction method (if any).

2. For the IT2 TSKFLC: choice of the antecedents, number of terms/FSs used for
each variable (antecedent in a rule), the shapes of the FOUs for antecedents,
the parameters that completely define each FOU, the parameters that com-
pletely define each consequent, number of rules, and t-norm.

Our focus in Section 3.6 will be on how to determine the FOU parameters.

3.4 WU–MENDEL UNCERTAINTY BOUNDS

The iterative nature of the EKM algorithms introduces time delays that may lead
to unpredictability, reduced performance, or even system instability in a fuzzy
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logic control system. This, of course, depends on the bandwidth of the plant and
the system’s sampling rate. Many approaches have been proposed for not using
EKM algorithms. Some preserve the ability to either approximate or compute
the type-reduced set, which may be a good thing because the type-reduced set
provides a measure of the MF uncertainties as they flow through the IT2 FLC
and plays a role that is analogous to a confidence interval. These approaches
first compute a T1 FS from an IT2 FS and then defuzzify that T1 FS. The other
approaches bypass type reduction completely and obtain the defuzzified output
directly. They are unable to provide a measure of the MF uncertainties as they
flow through the IT2 FLC, but they are faster than the methods that can do this.
For a comprehensive survey of all of these different approaches, see Mendel
(2013).

In this section we focus only on Wu and Mendel’s uncertainty bounds (WM
UBs) (Wu and Mendel, 2002) because they have already been used for real-time
fuzzy logic control and will also be used in Chapter 6.

We already know that there are no closed-form formulas for type reduction.
Wu and Mendel replace type reduction with lower and upper bounds—uncertainty
bounds—for the end points of the type-reduced set, and those bounds, which are
optimal in a mini–max sense, can be computed without having to perform type
reduction.14

To begin, four centroids (also called boundary T1 FLCs) are defined, all of which
can be computed once the left and right end points of the firing interval, f s(x) and

f
s
(x) (s= 1,… ,M), have been computed. In these centroids, as and bs are the left

and right end points of the centroid of the sth consequent IT2 FS, which have been

reordered in ascending order [note that associated variables such as f s(x) and f
s
(x)

need to be relabeled so they remain associated with the correct rule s]. These con-
sequent centroids only have to be computed (and stored) one time after the IT2
FLC has been designed since they do not depend upon the input to the FLC. The
boundary T1 FLC centroids are15

{LMFs,Left}∶ u(0)
l (x) =

∑M
s=1 f sas∑M
s=1 f s

(3.79)

{LMFs, right}∶ u(M)
r (x) =

∑M
s=1 f sbs∑M
s=1 f s

(3.80)

14In Wu and Mendel (2002) there are detailed derivations of the uncertainty bounds for center-of-sets

TR (because it handles nonsymmetrical shoulder MFs better than do other kinds of TR); however, these

results are also applicable to other kinds of TR, as explained in their Table V.
15Note, for example, that in Eq. (3.79) {LMF, left} refers to the fact that this centroid only uses lower
MFs of the firing interval and left end point values of the consequent set centroid. In addition, in Eqs.

(3.79)–(3.82) and (3.85) and (3.86), f s(x) and f
s
(x) have been shortened to f s and f

s
, respectively.
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{UMFs,Left}∶ u(M)
l (x) =

∑M
s=1 f

s
as∑M

s=1 f
s (3.81)

{UMFs, right}∶ u(0)r (x) =
∑M

s=1 f
s
bs∑M

s=1 f
s (3.82)

THEOREM 3.4 (WM UBs) The end points ul(x) and ur(x) of the TR set of an
IT2 FLC for the input x, are bounded from below and above as ul(x) ≤ ul(x) ≤ ul(x)
and ur(x) ≤ ur(x) ≤ ur(x), where:

ul(x) = min{u(0)
l (x), u(M)

l (x)} (3.83)

ur(x) = max{u(0)
r (x), u(M)

r (x)} (3.84)

ul(x) = ul(x) −
⎡⎢⎢⎢⎣
∑M

s=1

(
f
s
− f s

)
∑M

s=1 f
s∑M

s=1 f s
×

∑M
s=1 f s(as − a1)

∑M
s=1 f

s
(aM − as)∑M

s=1 f s(as − a1) +
∑M

s=1 f
s
(aM − as)

⎤⎥⎥⎥⎦ (3.85)

ur(x) = ur(x) +
⎡⎢⎢⎢⎣
∑M

s=1

(
f
s
− f s

)
∑M

s=1 f
s∑M

s=1 f s
×

∑M
s=1 f

s
(bs − b1)

∑M
s=1 f s(bM − bs)∑M

s=1 f
s
(bs − b1) +

∑M
s=1 f s(bM − bs)

⎤⎥⎥⎥⎦ (3.86)

Proof. See Appendix 3A.
Observe that the four bounds in Eqs. (3.83)–(3.86) can be computed without

having to perform type reduction. Wu and Mendel (2002) then approximate the
type-reduced set as

[ul(x), ur(x)] ≈ [ûl(x), ûr(x)] =

[
ul (x) + ul(x)

2
,

ur(x) + ur(x)
2

]
(3.87)

and compute the output of the IT2 FLC as

û(x) = 1

2

[
ul (x) + ul(x)

2
+

ur(x) + ur(x)
2

]
(3.88)

[instead of as (ul(x)+ ur(x))/2]. So, by using the WM UBs, they obtain both an
approximate type-reduced set as well as a defuzzified output.
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Wu and Mendel (2002) also provide the following upper bound on the differ-
ence 𝛿(x) between the defuzzified outputs of the actual type-reduced set and its
approximation, namely:

𝛿(x) ≡
||||||
ul (x) + ur(x)

2
− 1

2

[
ul (x) + ul(x)

2
+

ur(x) + ur(x)
2

]|||||| (3.89)

𝛿(x) ≤ 1∕4[(ul(x) − ul(x)) + (ur(x) − ur(x))] (3.90)

Lynch et al. (2006a, b) replace all of the Mamdani IT2 FLC computations with
those in Eqs. (3.83)–(3.88), that is, Eqs. (3.83)–(3.88) are their IT2 FLC. This
approach is summarized in Fig. 3.12.

A further approximation of Eqs. (3.85) and (3.86) is described in Chapter 6.
Two other ways to summarize the IT2 FLC in which type reduction has been

replaced by the WM UBs are depicted in Figs. 3.13 and 3.14.

Block Diagram Summary The entire chain of computations is summarized
in the block diagram of Fig. 3.13. Firing intervals are computed for all rules
[using Eqs. (3.51) and (3.52)], and they depend explicitly on the input x. Offline
computations of the centroids are performed for each of the M consequent IT2
FSs using EKM algorithms [as in Eq. (3.62)] and are then stored in memory. Four
boundary T1 FLC centroids are computed [using Eqs. (3.79)–(3.82)], after which
the four uncertainty bounds are computed [using Eqs. (3.83)–(3.86)]. The bounds
for the left (right) end of the approximated type-reduced set are then averaged
[using the two equations on the right-hand side of Eq. (3.87)] after which those
averages are again averaged [using Eq. (3.88)], the result being the mini–max
approximation to the defuzzified value of the control signal, û(x).

Neurofuzzy Summary The entire chain of computations is also summarized in
the layered architecture of Fig. 3.14, which resembles a neural network, although

Type 2 FLC

Approximated
Type-reduced set

T1 FS

Output processing

Rules

WM UBs

T2 Fuzzy input
sets

T2 fuzzy output
sets

Fuzzifier

Inference
engine

Measured crisp
inputs

Defuzzifier
Crisp outputs

x

u

u = f(x)

Figure 3.12 IT2 FLC in which type reduction has been replaced by the Wu–Mendel uncer-
tainty bounds (WM UBs).
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Figure 3.13 Block diagram summary of IT2 Mamdani FLC computations that use WM
UBs (Mendel, 2007; © 2007, IEEE).
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Figure 3.14 Neurofuzzy summary of IT2 Mamdani FLC computations that use WM UBs.
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(again) there is nothing “neural” about this FLC. Layer 1 refers to the inputs,
x1,… , xp. Layer 2 is where the inputs are fuzzified (F) into IT2 FSs. When sin-
gleton fuzzification is used, then Eq (3.10) applies. Layer 3 is where the firing
interval is computed for each of the M rules [using Eqs. (3.51) and (3.52)]. Layer
4 is where the WM UBs are computed [using Eqs. (3.79)–(3.86)]. Observe that
the output from this layer is shown as a double-lined arrow, to indicate that four
UBs are sent to Layer 5, where defuzzification is performed [Eq. (3.88], the result
being the min–max approximation to the defuzzified value of the control signal,
û(x).

Example 3.4 This example is a continuation of Example 3.3. Beginning with
the consequent centroids and firing intervals that are given, respectively, in
Tables 3.1 and 3.2, for x′ = col(170, 240), we compute ul(Steering)(x′), ul(Steering)(x

′),
ur(Steering)(x

′), ur(Steering)(x′), ûl(Steering)(x), ûr(Steering)(x), and ûSteering(x), using Eqs.

(3.83)–(3.88). The results are

ul(Steering)(x′) = min

⎧⎪⎨⎪⎩
∑4

s=1 f sas∑4

s=1 f s
,

∑4

s=1 f
s
as∑4

s=1 f
s

}

= min

{
0.1 × (−81.43) + 0.3 × (−81.43) + 0.1 × (8.57) + 0.2 × (98.57)

0.1 + 0.3 + 0.1 + 0.2
,

0.6 × (−81.43) + 0.8 × (−81.43) + 0.6 × (8.57) + 0.7 × (98.57)
0.6 + 0.8 + 0.6 + 0.7

}
= min{−17.17,−14.76} = −17.17 (3.91)

u
l(Steering)(x

′) = ul(Steering)(x′) −
⎡⎢⎢⎢⎣
∑4

s=1

(
f
s
− f s

)
∑4

s=1 f
s∑4

s=1 f s
×

∑4

s=1 f s(as − a1)
∑4

s=1 f
s
(a4 − as)∑4

s=1 f s(as − a1)+
∑4

s=1 f
s
(a4 − as)

⎤⎥⎥⎥⎦
= −17.17 −

[
(0.6 − 0.1) + (0.8 − 0.3) + (0.6 − 0.1) + (0.7 − 0.2)
(0.6 + 0.8 + 0.6 + 0.7) × (0.1 + 0.3 + 0.1 + 0.2)

×
g

h

]
= −17.17 −

[
2

1.89
× 14,230.08

361.22

]
= −58.67 (3.92)

where

g = [0.1 × (8.57 + 81.43) + 0.2 × (98.57 + 81.43)]

× [0.6 × (98.57 + 81.43) + 0.8 × (98.57 + 81.43) + 0.6 × (98.57 + 8.57)]

= 14, 230.08

h = [0.1 × (8.57 + 81.43) + 0.2 × (98.57 + 81.43)]

+ [0.6 × (98.57 + 81.43) + 0.8 × (98.57 + 81.43) + 0.6 × (98.57 + 8.57)]

= 361.22
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In a similar manner, it follows that

ur(Steering)(x
′) = −1.908 (3.93)

ur(Steering)(x′) = 57.208 (3.94)

Consequently,

ûl(Steering)(x′) =
1

2
(−17.17 − 58.67) = −37.92 (3.95)

ûr(Steering)(x′) =
1

2
(−1.908 + 57.208) = 27.65 (3.96)

ûSteering(x′) =
1

2
(−37.92 + 27.65) = −5.14 (3.97)

Comparing Eqs. (3.95)–(3.97) with Eqs. (3.71), (3.72), and uSteering(x′)=− 5.52,
respectively, observe the following: (1) ul(Steering) ≤ ul(Steering) ≤ ul(Steering), that

is, − 58.67≤− 54.97≤− 17.17; (2) ur(Steering) ≤ ur(Steering) ≤ ur(Steering), that is,

− 1.908≤ 43.92≤ 57.208; (3) even though ûl(Steering)(x′) = −37.92 is not a very
good approximation to ul(Steering)(x

′)=− 54.97, and ûr(Steering)(x′) = 27.65 is not
a very good approximation to ur(Steering)(x

′)= 43.92, ûSteering(x′) = −5.14 is a
reasonably good approximation to uSteering(x′)=− 5.52.

Example 3.516 Section 1.8.1.1 compared a T1 FLC and an IT2 FLC for the speed
control of a marine diesel engine. Although which kind of IT2 FLC was used was
not stated in that section, we can now reveal that the results that are depicted in
Figs. 1.9 and 1.10 were obtained for the IT2 FLC that used type reduction and KM
algorithms.

Figure 3.15, which is analogous to Fig. 1.9, depicts the control surfaces for the
IT2 FLC that used type reduction and KM algorithms and the IT2 FLC that used
WM uncertainty bounds, and shows how similar they are. Figure 3.16 is analogous
to Fig. 1.10 and shows that both the IT2 FLC that used type reduction and KM
algorithms and the IT2 FLC that used WM uncertainty bounds give very similar
responses to the 100% load addition.

Figures 3.15 and 3.16 strongly suggest that the WM UBs provide a very viable
alternative to the IT2 FLC that uses type reduction and should be very useful for
real-time applications.

3.5 CONTROL ANALYSES OF IT2 FLCs

Interval type-2 FLCs can be studied like any other nonlinear controller. For
example, stability and robustness studies can be performed by means of extensive
simulations

16The material in this example is taken from Lynch et al. (2006b; © 2006, IEEE).
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Figure 3.15 Control surfaces for IT2 FLCs that use (a) type reduction and (b) WM UBs (Hagras, 2007; © 2007, IEEE).
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Figure 3.16 Comparisons of the responses of a Viking 25 against an IT2NFC (that uses
type reduction) and a real-time IT2 FC (that uses WM UBs) with 100% load addition (Lynch
et al., 2006b; © 2006, IEEE).

and by analyzing control surfaces (e.g., Fig. 1.9) showing the mathematical func-
tions that map inputs into outputs.

For problems with low dimensionality (i.e., problems with one to two inputs),
a control surface enables one to visualize the unknown input–output mapping
function articulated by the IT2 FLC, which allows one to analyze the controller’s
response, for example, the smoother the shape of the control surface, generally,
the better will be the controller’s response. In addition, near the set point [e.g., in
Fig. 1.9, when the error (e) and difference in error (d) are equal to zero], the control
surfaces need to be smooth and must avoid steep changes so that uncertainties
and disturbances in the inputs do not cause abrupt changes in the outputs, and so
that overshoots, settling times, rise time, and steady-state errors will be as small
as possible. Observe in Fig. 1.9a that the T1 FLC control surface is steep and
nonsmooth, especially around the set point. Consequently, any small variations
of e and d can cause considerable changes in the FLC output, which means that
the T1 FLC in Fig. 3.1 is vulnerable to uncertainties. Moreover, the larger the
variations in e and d due to uncertainties (associated with changes of operating
and/or load conditions), the bigger will be the disturbances to the FLC output,
which can cause instability.

Figures 1.9b, 3.10a, and 3.10b depict control surfaces for different kinds of IT2
FLCs.They all show a smooth response and result in very good control performance
that can handle the uncertainties and disturbances, because near the set point where
e= 0 and d= 0 small variations in e and d do not cause significant changes to the IT2
FLC output; the response proceeds gradually and smoothly with no steep changes.
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Figure 3.17a depicts familiar step response plots. Similar plots can easily be
obtained for all IT2 FLCs, as shown, for example, in Fig.3.17b for the speed control
of the marine diesel engine that was described in Section 1.8.1.1.

Analyses of IT2 FLCs are not limited to examining control surfaces or step
response plots. Chapters 4–6 present more detailed and mathematically oriented
control analyses (Lyapunov stability analyses and robustness analyses) for different
kinds of IT2 Mamdani and TSK FLCs.

3.6 DETERMINING THE FOU PARAMETERS OF IT2 FLCs

Section 3.3.4 explains what is meant by the design of either IT2 Mamdani or TSK
FLCs. In this section we focus exclusively on determining the FOU parameters
for such FLCs, and so we assume that decisions have already been made about
the choice of the antecedents, number of MFs for each variable, number of rules,
t-norm, and type reduction method (if one is used). Although there can be many
methods for establishing the FOUs, in this section we focus on only two of them
because they are the ones that are widely used for an FLC.

3.6.1 Blurring T1 MFs

In this method one begins with a T1 MF and then creates the FOU by blurring it
(e.g., Mendel, 2001). Blurring can conceptually be thought of as moving the T1 MF
to the left and right or only in one direction (e.g., Fig. 3.18). Exactly how much
blurring should be done to create the FOU can be established either by trial and
error or by any of the optimization procedures that are described in Section 3.6.2
in which the amount of blurring is treated as an FOU design parameter.

3.6.2 Optimizing FOU Parameters

Sometimes the parameters of an IT2 FLC are optimized (tuned, learned) during its
design phase. The optimized parameters are then fixed during its operational phase,
unless continued adaptation is required, in which case online changes to parameters
take place.

In this approach one sets up a mathematical objective function, J(𝛟), that
depends upon the design parameters, 𝛟. The elements of 𝛟 include all of the
antecedent and consequent FOU parameters. For example, if antecedent and
consequent FOUs are Gaussian with uncertain mean m∈ [m1,m2] and certain
standard deviation, 𝜎, then each FOU is described by three parameters. For M
Mamdani rules (each with p antecedents and one consequent), 𝛟 will contain
M(3p+ 3) elements; for M comparable TSK rules, 𝛟 will contain M[3p+ (p+ 1)]
elements since each rule consequent contains p+ 1 parameters.

The function J (𝛟) is a nonlinear function of 𝛟 and so some sort of mathematical
programming approach has to be used to optimize it.There aremany different kinds
of optimization algorithms that can be used to do this. For the rest of this section
we assume that 𝛟 has N𝜙 elements.
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Figure 3.17 (a) Step response plot used in traditional control systems and (b) step response plot of an IT2 Mamdani FLC applied in the speed
control of a marine diesel engine.
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Figure 3.18 Blurring of T1 MFs to obtain an FOU: (a) A trapezoidal T1 MF is blurred by
moving its legs both to the left and to the right, and (b) a triangle T1 MF is blurred by sliding
its left leg to the left and its right leg to the right.

Until recently, most designs of IT2 FLSs used gradient-based optimization algo-
rithms that require mathematical formulas for derivatives of J(𝛟) with respect to
each of the design parameters. As stated in Mendel (2004 p. 85):

Generally, it is much more complicated to compute such derivatives for an IT2
FLC than it is for a T1 FLC, because:

• In an IT2 FLC the design parameters appear in upper and lower MFs, whereas
in a T1 FLC they appear in a single MF.

• In an IT2 FLC, type reduction establishes the two parameters L(x′) and R(x′)
(the switch points) which in turn establish the upper and lower firing interval
MFs that are used to compute the left and right end points of the type-reduced
set. There is no type reduction in a T1 FLC.

When EKM algorithms (or any of the other comparable algorithms) are used to
compute the COS type-reduced set, they require (without exception) that the upper
and lower firing intervals must first be reordered in an increasing order. Usually, the
orderings are different for the upper and lower firing intervals. Derivative compu-
tations require that the upper and lower firing intervals must then be put back into
their original rule ordering so that one knows exactly where the MFs are because
the parameters in 𝛟 occur in specific MFs. Keeping track of where the parame-
ters are requires using permutation matrices, and detailed equations are provided
in Mendel (2004).

It is very easy to make mistakes in computing the required derivatives. For
example, Hagras (2006) points out incorrect derivative formulas that are in Wang
et al. (2004). Not only that, but one must also include tests on the primary variables
because lower and upper MFs can have different formulas for different subranges
of the primary variables. Also, formulas for the derivatives depend upon the archi-
tecture chosen for the FLC and will be different for IT2 Mamdani, WM UB, and
TSK architectures.

Additionally, gradient-based optimization algorithms (also, called back-
propagation algorithms) are not globally convergent, so the solution one obtains
by using them to optimize J(𝛟) will only be a local extremum. Of course, there



DETERMINING THE FOU PARAMETERS OF IT2 FLCs 117

are strategies for repeating the optimization by randomly rechoosing initial values
for the parameters, but there is no guarantee that even doing this will provide the
global extremum.

In conclusion, our recommendation is to not use gradient-based optimization
algorithms for the designs of IT2 FLCs. For those readers who insist on using such
optimization algorithms, see Mendel (2001, 2004) and Hagras (2006) for some
derivative formulas, but only for IT2 Mamdani FLCs.

Fortunately, there now are globally convergent iterative search algorithms that do
not require any derivatives, for example, simulated annealing, genetic algorithms
(GA), particle swarm optimization (PSO), quantum particle swarm optimization
(QPSO), ant colony optimization, and so forth. Many of these have already been
applied to the designs of IT2 FLSs (e.g., Castillo and Melin, 2012; Hidalgo et al.,
2012; Melin et al., 2013; Moldonado et al., 2013).

In the rest of this section we focus on two optimization algorithms (QPSO and
GA) that do not require derivatives and that can be used for any of the FLC archi-
tectures in this book.

3.6.2.1 Using QPSO to Optimize the Parameters in an IT2 FLC QPSO is
a globally convergent (Wei et al., 2010) iterative search algorithm that does not use
derivatives, generally outperforms the original PSO (Kennedy and Eberhardt, 1995;
Wang et al., 2011), and has fewer parameters to control. It is a population-based
optimization technique, where a population is called a swarm that contains a set of
different particles. Each particle represents a possible solution to an optimization
problem. The position of each particle is updated (in each QPSO iteration) by using
itsmost recent own best solution, mean of the personal best positions of all particles,
and the global best solution found by all particles so far.

Quantum particle swarm optimization finds optimized 𝛟 based on the following
criterion: min𝛟m

J(𝛟m). The current position (vector) of the mth particle is defined
as (m= 1,… ,Nm)

𝛟m = col(𝜙m,1, 𝜙m,2, … , 𝜙m,N𝜙
) (3.98)

A particle best position [i.e., the position that produces the minimal value of J(𝛟)
over the entire history of that particle], pm = col(pm,1, pm,2, … , pm,N𝜙

), is computed
as (t= 1,… ,N𝜙)

pm,t(g + 1) = 𝜂 × pm,t(g) + (1 − 𝜂) × pgbest,t(g) (3.99)

where g= 1,… ,G− 1 is the index of a generation (iteration), pm,t(1) is initial-
ized by 𝜙m,t(1), 𝜂 is a random variable uniformly distributed in (0,1], and pgbest(g)
[whose components are pgbest,t(g)] denotes the global best (gbest) position found in
the history of the entire swarm, that is (m= 1,… ,Nm),

pgbest(g) = arg min
pm(g),∀m=1… ,Nm

J(pm(g)) (3.100)
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A global point, the mean best position of the population, is introduced into
QPSO; it is denoted asm(g) and is defined as the samplemean of the pm(g) positions
of all Nm particles, that is,

m(g) = 1

Nm

Nm∑
m=1

pm(g) (3.101)

At the end of each generation, a new position of a particle is obtained, as
(t= 1,… ,N𝜙):

𝜙m,t(g + 1) = pm,t(g + 1) ± 𝛽|mt(g) − 𝜙m,t(g)| ln
1

𝜌
(3.102)

where parameter 𝛽, called the contraction–expansion coefficient, can be tuned to
control the convergence speed of the algorithm, and 𝜌 is also a random variable
uniformly distributed in (0,1]. In Eq. (3.102), the plus andminus signs are randomly
selected to generate the new position of a particle.

Pseudocode for QPSO is given in Table 3.3.
Using IT2 FSs in an FLC has the potential to provide better control performance

(in the strict sense of input-to-output mapping) for an FLC than using T1 FSs,
which is why there has been so much interest in IT2 FLCs. In fact, as IT2 FSs
generalize T1 FSs, control performance is certainly no worse for the IT2 FLC when
doing a one-to-one comparison per control cycle (note that overall real-time control
performance on standard computing equipment such as PCs may be affected by the
faster execution and thus larger number of control cycles per timeframe of aT1 FLC
in comparison to an equivalent IT2 FLC).

Using QPSO lets us do this by using the following design procedure.

1. Design a T1 FLC by optimizing its parameters using QPSO.

2. Design an IT2 FLC by optimizing its parameters using QPSO in which one
particle is associated with the just designed T1 FLC.

Mendel (2013) has proven that by virtue of the QPSO algorithm, the perfor-
mance of the optimized IT2 FLC cannot be worse than that of the optimized T1
FLC. This does not mean that the performance of the optimized IT2 FLC will be
significantly better than that of the optimized T1 FLC. There is no analysis that
is available to date that focuses on such relative performance improvements. Of
course, relative improvements are very application dependent because objective
function J(𝛟) is application dependent.

Example 3.6 In step 2 of the above design procedure, one particle is associ-
ated with a just designed T1 FLC. Suppose, for example, that the IT2 FLC is
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TABLE 3.3 Pseudo Code for QPSO as Used in Optimal Designs of an IT2 FLC

Initialize 𝛟1(1) as a T1 FLC particle, and all other 𝛟m(1) randomly
(m = 2, … ,Nm)
Set pm(1) = 𝛟m(1) (m = 1, … ,Nm)
For g = 1 to G-1

Calculate m(g) = 1

Nm

∑Nm

m=1
pm(g)

Calculate J(pm(g)) (m = 1, … ,Nm)
pgbest(g) = arg min

pm(g), ∀m=1 ,… , Nm

J(pm(g))

for m = 1 to Nm (number of particles)
Calculate J(𝛟m(g))

If J(𝛟m(g)) < J(pm(g))
pm(g) = 𝛟m(g)

end if
for t = 1 to N𝜙 (number of components in each

particle)
𝜂 = rand(0, 1)
pm,t(g + 1) = 𝜂 × pm,t(g) + (1 − 𝜂) × pgbest,t(g)
𝜌 = rand(0, 1)
if rand(0, 1) > 0.5 then

𝜙m,t(g + 1) = pm,t(g + 1) − 𝛽|mt(g) − 𝜙m,t(g)| ln
1

𝜌

else
𝜙m,t(g + 1) = pm,t(g + 1) + 𝛽|mt(g) − 𝜙m,t(g)| ln 1

𝜌

end if
end for

end for
end for

Mamdani + COS TR, and the antecedent and consequent FOUs are the Gaussian
ones stated above. The structure of a particle for such an IT2 FLC is

𝛟IT2 = col(
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) (3.103)

The T1 particle must be of the same length as this IT2 particle, begins with Eq.
(3.103), and can be expressed as



120 INTERVAL TYPE-2 FUZZY LOGIC CONTROLLERS

𝛟T1 = col(
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) (3.104)

Observe, in Eq. (3.104), that:

• All of the MF parameters are taken from the optimal T1 FLC design.

• By setting the values for the end points of the means to be the same, the uncer-
tainty in each rule about the means for all p antecedents and its consequent
has disappeared.

• In this way it is straightforward to embed a T1 particle into an IT2 particle.

3.6.2.2 Using GA to Optimize the Parameters in an IT2 FLC Genetic
algorithms provide a stochastic optimization method that is based on Darwinian
evolution. In a “survival of the fittest” approach, a large number of solutions is gen-
erated randomly, followed by selective “breeding” of the fittest solutions, through
operations such as crossover and mutation, to obtain fitter (i.e., better at the task
in question) solutions. Selection and breeding are repeated iteratively over time
until a stopping criterion is reached, for example, completing a certain number of
generations or discovering an individual with a certain desired fitness. Today, the
founding work on modern GAs is attributed to Holland’s seminal book (Holland,
1975) that laid the foundations for a vast research field in evolutionary algorithms,
specifically GAs.

Generate algorithms have been widely applied to the configuration and/or opti-
mization of IT2 FLCs [e.g., see Wu and Tan (2004), Wagner and Hagras (2007),
Martinez et al. (2008), Martinez et al. (2009), and Shill et al. (2012).

In designing an IT2 FLC with GAs using a step-by-step approach, first an “opti-
mal” T1 FLC (using a GA or other means) is designed, after which the T1 FSs are
transformed to IT2 FSs using GA. In other words, the structure of the FLC (i.e., rule
bases, number and type of fuzzy sets) is determined for the T1 case first, then the
T1 sets are blurred (see Section 3.6.1), after which the parameters of the “blurred”
IT2 sets are optimized by a GA. This approach has the advantage of a smaller set of
parameters for the GA to optimize (because the overall task is split into two smaller
subtasks, resulting in fewer possible permutations of parameters), thus offering
faster convergence. Further, in many applications, the T1 FLC developed in the
first stage of the process is employed as a baseline reference for comparison and
evaluation of the utility of the IT2 FLC. An example of this approach can be found
in Wu and Tan (2004) and is also described in Section 5.2.5.3.
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A second approach to designing IT2 FLCs using GAs relies on the direct con-
figuration and optimization of all the IT2 FLC parameters (i.e., number and kind
of IT2 FSs, parameters for all IT2 FSs, and the rule base). This approach has the
advantage that it avoids a significant pitfall of the step-by-step approach, namely,
it does not rely on the assumption that the basic design of the optimal IT2 FLC is
necessarily the same as that of an optimal T1 FLC. As such, the second approach
is not dependent on any previous optimization process and as such results in an
optimal IT2 FLC where all its design parameters are considered directly. An obvi-
ous downside to this approach is the larger number of parameters that need to be
optimized by the GA in comparison to the two-step approach. An example of this
approach can be found in Wagner and Hagras (2007).

Because the direct approach enables a direct and overall optimization of an IT2
FLC using a GA, we focus on it in the rest of this section. Applying a GA to
optimize an IT2 FLC involves a number of steps that are enumerated below. For
each of the steps a variety of options are possible. We focus on illustrating a com-
mon approach based loosely on the GA/IT2 FLC design presented in Wagner and
Hagras (2007).

Step 0: Configuration – A GA is used to evolve the parameters of the IT2 FLC
FOUs and its rules. As such, the GA chromosome includes the IT2 FOU
parameters for both the inputs and outputs of the T2 FLC as well as a repre-
sentation for the rules.

Real-value encoding can be used to encode each MF parameter of the FLC
as a gene in a chromosome, whereas symbolic encoding can be used to
encode the rule base of the FLC (e.g., using a 0 to represent the logical
OR and a 1 to represent the logical AND). In other words, the chromo-
some becomes a list of all the real- and symbol-valued parameters of the
FLC. Furthermore, a population size PSize for the GA needs to be defined,
where PSize refers to the number of individuals in each generation. A selec-
tion strategy is chosen that defines how the best individuals are chosen for
reproduction through crossover andmutation in each generation. Common
strategies are elitist or roulette wheel (or a combination of both). Finally,
the crossover and mutation operations are defined where the crossover
operation is specified, for example, as single- or multipoint crossover, and
the mutation rate is fixed (commonly to a very low level of about 5%).
It is crucial to ensure that the crossover and mutation operations result
in valid FLCs (e.g., that symbolic and real-valued representations in the
chromosomes are not mixed).

Step 1: Initialization – PSize chromosomes are generated randomly taking into
account the grammatical correctness of the chromosome (e.g., the standard
deviation of an LMF must be less than that of the UMF for any given IT2
FS). The “chromosome counter” is set to 1 (the first chromosome), and the
“generation counter” is set to 1 (the first generation).

Step 2: Fitness Evaluation – An IT2 FLC is constructed using the chromosome
identified by the chromosome counter and the resulting FLC is executed [in
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simulation or in the real world (such as in a mobile robot)]. A fitness function
is used to determine the specific FLC’s performance/fitness (e.g., how accu-
rately the controller follows a given set point). If chromosome counter <PSize,
then the chromosome counter is incremented by 1 and step 2 is repeated, oth-
erwise one proceeds to step 3.

Step 3: Selection – A number of FLC chromosomes are selected for the repro-
duction step based on the chosen selection strategy, for example, using a
roulette wheel strategy, the fitter an individual is, the higher the probability
is for its selection.

Step 4: Reproduction – Crossover and mutation are applied, as defined in step
0 to the chromosomes selected in step 3 and a new population of size PSize is
created.

Step 5: Iteration – The generation counter is incremented. If a stopping cri-
terion is not achieved, for example, if generation counter < the maximum
number of generations and/or if the desired performance is not achieved, the
chromosome counter is reset to 1 and step 2 is returned to; otherwise, step 6
is reached.

Step 6: Termination – The chromosome/FLC that results in the best fitness is
kept and a final design has been achieved.

Pseudocode for GA is given in Table 3.4.

3.7 MOVING ON

The materials you have just covered in this chapter will be used Chapters 4–6. In
the next chapter some of it will be used to rigorously derive precise mathemati-
cal relationships between the input and output of a variety of IT2 Mamdani and
TSK FLCs. Some of the T2 FLCs are of the PI or PD type, and their derived rela-
tionships reveal them to be nonlinear variable PI or PD controllers that have vari-
able proportional-gain and integral-gain (or derivative-gain) plus variable control
offset.

TABLE 3.4 Pseudocode for GA as Used in Optimal Designs of an IT2 FLCa

Set GA Input Variables:
P = Population size
GC = Generation counter
CC = Chromosome counter
𝜙m = Chromosome (m= 1,… ,P)
Fm = Chromosome fitness (m= 1,… ,P)
Sm = Fitness-based selection probability (m= 1,… ,P)
CRate = Crossover rate
MRate = Mutation rate
G = Maximum generation counter (g= 1,… ,G)
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TABLE 3.4 (Continued)

Initialize 𝛟P (Step 1): initialize all 𝜙m chromosomes randomly (but
so that they result in valid IT2 FLCs)
WHILE g ≤ G
{
Evaluate Fitness (Step 2):

for m=1 to m=P
Fm = fitness of FLC based on chromosome 𝜙m

end for
Selection (Step 3):

for m=1 to m=P

Sm = Fm

/∑P

i=1
Fi

end for
select P chromosomes based on Sm and store as 𝛟′

Reproduction (Step 4):
Apply Crossover to chromosomes in 𝛟′ based on CRate
Apply Mutation to chromosomes in 𝛟′ based on MRate

Iteration (Step 5):
g=g+1
IF stopping criterion (e.g., g>G) is reached

break WHILE (Step 6)
}

a Many variations of GA designs are possible (e.g., including elitism).

APPENDIX 3A. PROOF OF THEOREM 3.4

This theorem, whose proof is taken from Appendix IV of Wu and Mendel (2002; ©
2002, IEEE), is proved in two steps. First, it is shown that [ul(x), ur(x)] [where ul(x)
and ur(x) are given by Eqs. (3.83) and (3.84), respectively] is an inner bound for
the type-reduced set. Then the outer-bound set [ul(x), ur(x)] [where ul(x) and ur(x)
are given by Eqs. (3.85) and (3.86), respectively] is derived, based on the distance
between the type-reduced set and its inner-bound set.

3A.1 Inner-Bound Set [ul(x),ur(x)]

For COS type reduction [see Eqs. (3.65) and (3.66)],

ul(x) = min
0≤L≤M

∑L
s=1 f

s
as +

∑M
s=L+1 f sas∑L

s=1 f
s
+

∑M
s=L+1 f s

(3A.1)

ur(x) = max
0≤R≤M

∑R
s=1 f sbs +

∑M
s=R+1 f

s
bs∑R

s=1 f s +
∑M

s=R+1 f
s (3A.2)



124 INTERVAL TYPE-2 FUZZY LOGIC CONTROLLERS

Considering the two extreme end points for L (namely, L= 0 and L=M) for both
Eqs. (3A.1) and (3A.2), it must be true that

ul(x) ≤ u(0)
l (x) and ul(x) ≤ u(M)

l (x) (3A.3)

and
ur(x) ≥ u(0)

r (x) and ur(x) ≥ u(M)
r (x) (3A.4)

In these equations, u(0)
l (x), u(M)

r (x), u(M)
l (x), and u(0)

r (x) are defined in Eqs.
(3.79)–(3.82), respectively, and the ≤ in Eq. (3A.3) is due to the minimum
operation in Eq (3A.1), whereas the ≥ in Eq. (3A.4) is due to the maximum
operation in Eq. (3A.2). From the inequalities in Eqs. (3A.3) and (3A.4), it follows
that

ul(x) ≤ min{u(0)
l (x), u(M)

l (x)} ≡ ul(x) (3A.5)

ur(x) ≥ max{u(0)
r (x), u(M)

r (x)} ≡ ur(x) (3A.6)

The right-hand sides of Eqs. (3A.5) and (3A.6) are the same as Eqs. (3.83) and
(3.84), respectively. We leave it to the reader to show that ul(x) ≤ ur(x) so that
[ul(x), ur(x)] is a valid set.

3A.2 Outer-Bound Set [u
l
(x),ur(x)]

We provide the details for ul(x), and leave the details of ur(x) to the reader because
they are so similar to the ones for ul(x).

In Eq. (3A.5) we have shown that ul(x) − ul(x) ≥ 0. We next show that
ul(x) − ul(x) is bounded from above, that is, ul(x) − ul(x) ≤ c, from which it fol-
lows that ul(x) ≥ ul(x) − c ≡ ul(x). To determine c,we begin by using the following
inequality:

min(A,B) ≤ 𝜁A + (1 − 𝜁 )B (3A.7)

for 0≤ 𝜁 ≤ 1. To understand this inequality we can, without loss of generality,
assume A≥B, in which case min(A,B)=B. Thus, we need only show that
B≤ 𝜁A+ (1− 𝜁 )B= 𝜁 (A−B)+B; but this inequality is valid since A≥B and
𝜁 ≥ 0. Although Eq. (3A.7) is in terms of a free parameter 𝜁 , in the following we
determine an optimal value for 𝜁 , 𝜁*.

From Eq. (3.83), observe that

ul(x) − ul(x) = min{u(0)
l (x) − ul(x), u

(M)
l (x) − ul(x)} (3A.8)

Applying Eq. (3A.7) to this equation, we find

ul(x) − ul(x) ≤ 𝜁 [u(0)l (x) − ul(x)] + (1 − 𝜁 )[u(M)
l (x) − ul(x)] (3A.9)

Before finding 𝜁*, we obtain upper bounds for u(0)
l (x) − ul(x) and u(M)

l (x) − ul(x).
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Expressing u(0)l (x) using Eq. (3.79), and using Eq (3A.1) for ul(x), with L* as
the winning value of L, we find

u(0)l (x) − ul(x) =

∑M
s=1 f susl∑M
s=1 f s

−

∑L∗

s=1 f
s
as +

∑M
s=L∗+1 f sas∑L∗

s=1 f
s
+

∑M
s=L∗+1 f s

≥ 0 (3A.10)

where the latter inequality follows from Eq. (3A.3) when applied to the left-hand
side of Eq. (3A.10); hence,

u(0)l (x) − ul(x) =

a
⏞⏞⏞⏞⏞⏞⏞∑M

s=1
f sas∑M

s=1
f s

⏟⏞⏟⏞⏟
c

−

a
⏞⏞⏞⏞⏞⏞⏞∑M

s=1
f sas +

b
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞∑L∗

s=1
(f
s
− f s)as∑M

s=1
f s

⏟⏞⏟⏞⏟
c

+
∑L∗

s=1
(f
s
− f s)

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
d

= ad − bc
c(c + d)

= a
c
⋅

d
c + d

− b
c + d

(3A.11)

Upon further simplification of this equation, it can be expressed as

u(0)l (x) − ul(x) = u(0)
l (x) ⋅

∑L∗

s=1(f
s
− f s)∑L∗

s=1 f
s
+

∑M
s=L∗+1 f s

−

∑L∗

s=1(f
s
− f s)as∑L∗

s=1 f
s
+

∑M
s=L∗+1 f s

(3A.12)

Because a1 ≤ a2 ≤ · · · ≤ aL∗
, it follows that

u(0)l (x) − ul(x) ≤ u(0)l (x) ⋅

∑L∗

s=1(f
s
− f s)∑L∗

s=1 f
s
+

∑M
s=L∗+1 f s

− a1

∑L∗

s=1(f
s
− f s)∑L∗

s=1 f
s
+

∑M
s=L∗+1 f s

(3A.13)

u(0)l (x) − ul(x) ≤
[u(0)l (x) − a1]

∑L∗

s=1(f
s
− f s)∑L∗

s=1 f
s
+

∑M
s=L∗+1 f s

(3A.14)

In a similar manner, we find

u(M)
l (x) − ul(x) =

∑M
s=1 f

s
as∑M

s=1 f
s −

∑L∗

s=1 f
s
as +

∑M
s=L∗+1 f sas∑L∗

s=1 f
s
+

∑M
s=L∗+1 f s

≥ 0 (3A.15)
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where the latter inequality also follows from Eq. (3.83); hence,

u(M)
l (x) − ul(x) =

∑M
s=L∗+1(f

s
− f s)as∑L∗

s=1 f
s
+

∑M
s=L∗+1 f s

− u(M)
l (x)

∑M
s=L∗+1(f

s
− f s)∑L∗

s=1 f
s
+

∑M
s=L∗+1 f s

(3A.16)

u(M)
l (x) − ul(x) ≤ aM

∑M
s=L∗+1(f

s
− f s)∑L∗

s=1 f
s
+

∑M
s=L∗+1 f s

− u(M)
l (x)

∑M
s=L∗+1(f

s
− f s)∑L∗

s=1 f
s
+

∑M
s=L∗+1 f s

(3A.17)

u(M)
l (x) − ul(x) ≤

[aM − u(M)
l (x)]

∑M
s=L∗+1(f

s
− f s)∑L∗

s=1 f
s
+

∑M
s=L∗+1 f s

(3A.18)

Substituting Eqs. (3A.14) and (3A.18) into Eq. (3A.9), we find that

ul(x) − ul(x) ≤ 𝜁
[u(0)

l (x) − a1]
∑L∗

s=1(f
s
− f s)∑L∗

s=1 f
s
+

∑M
s=L∗+1 f s

+ (1 − 𝜁 )
[aM − u(M)

l (x)]
∑M

s=L∗+1(f
s
− f s)∑L∗

s=1 f
s
+

∑M
s=L∗+1 f s

(3A.19)

Note that it is always possible to express
∑L∗

s=1(f
s
− f s) and

∑M
s=L∗+1(f

s
− f s) in

terms of
∑M

s=1(f
s
− f s) as follows:

L∗∑
s=1

(f
s
− f s) = t

M∑
s=1

(f
s
− f s) (3A.20)

and
M∑

s=L∗+1

(f
s
− f s) = (1 − t)

M∑
s=1

(f
s
− f s) (3A.21)

where t≡ t(x)∈ [0, 1] is determined by L*(x) [just solve Eq. (3A.20) for t].
Substituting Eqs. (3A.20) and (3A.21) into Eq. (3A.19), we then find that

ul(x) − ul(x) ≤ 𝜁 t[u(0)
l (x) − a1] + (1 − 𝜁 )(1 − t)[aM − u(M)

l (x)]

t
∑M

s=1 f
s
+ (1 − t)

∑M
s=1 f s

×
M∑
s=1

(f
s
− f s)

(3A.22)
which can be expressed as

ul(x) − ul(x) ≤ g(𝜁, t)
M∑
s=1

(f
s
− f s) ≤ max

t∈[0,1]
g(𝜁, t)

M∑
s=1

(f
s
− f s) (3A.23)
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where

g(𝜁, t) ≡ 𝜁 t[u(0)l (x) − a1] + (1 − 𝜁 )(1 − t)[aM − u(M)
l (x)]

t
∑M

s=1 f
s
+ (1 − t)

∑M
s=1 f s

(3A.24)

Next, we treat 𝜁 and t as independent variables and use the min–max method to
find 𝜁*, that is,

𝜁∗ = arg min
𝜁∈[0,1]

[
max
t∈[0,1]

g(𝜁, t)
]
= arg min

𝜁∈[0,1]
g(𝜁, t∗) (3A.25)

Notice that g(𝜁 , t*) is the maximum of g(𝜁 , t) with respect to t and g(𝜁*, t*) is the
minimum of g(𝜁 , t*) with respect to 𝜁 . Since t∈ [0, 1] is indirectly determined by
the input x [see the line after Eq. (3A.21)], we cannot arbitrarily choose its value;
instead, we consider the worst case (i.e., the maximum value) of g(𝜁 , t) with respect
to t, to find the upper bound for ul(x) − ul(x). On the other hand, since 𝜁 ∈ [0, 1] is
a free parameter, we can choose its value arbitrarily to find a tight upper bound for
ul(x) − ul(x).

To find t* and g(𝜁 , t*), we calculate the partial derivative of g(𝜁 , t) in Eq. (3A.24)
with respect to t as follows:

𝜕g(𝜁, t)
𝜕t

=
𝜁 [u(0)

l (x) − a1]
∑M

s=1 f s − (1 − 𝜁 )[aM − u(M)
l (x)]

∑M
s=1 f

s

[
t
∑M

s=1 f
s
+ (1 − t)

∑M
s=1 f s

]2
(3A.26)

Because the numerator of Eq. (3A.26) is not a function of t, t* cannot be deter-
mined by setting 𝜕g(𝜁 , t)/𝜕t= 0. Instead, Eq. (3A.26) must be analyzed in order to
determine t*. To begin, note that 𝜕g(𝜁 , t)/𝜕t is a linear function of 𝜁 , that is, its slope
does not depend on 𝜁 :

𝜕
𝜕𝜁

[
𝜕g (𝜁, t)

𝜕t

]
=

[u(0)l (x) − a1]
∑M

s=1 f s + [aM − u(M)
l (x)]

∑M
s=1 f

s

[
t
∑M

s=1 f
s
+ (1 − t)

∑M
s=1 f s

]2
(3A.27)

Note, also, that (remember that the as are rank ordered in increasing order, and the
lower and upper values of the firing intervals are positive)

u(0)l (x) − a1 =

∑M
s=1 f sas∑M
s=1 f s

− a1 =

∑M
s=2 f s(as − a1)∑M

s=1 f s
> 0 (3A.28)

and

aM − u(M)
l (x) = aM −

∑M
s=1 f

s
as∑M

s=1 f
s =

∑M
s=1 f

s
(aM − as)∑M
s=1 f

s > 0 (3A.29)
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Substituting Eqs. (3A.28) and (3A.29) into Eq. (3A.27) we see that the slope of
𝜕g(𝜁 , t)/𝜕t is positive.

Next, set 𝜕g(𝜁 , t)/𝜕t= 0 in Eq. (3A.26) and solve for 𝜁 , calling that value 𝜁*,
where

𝜁∗ ≡ [aM − u(M)
l (x)]

∑M
s=1 f

s

[u(0)l (x) − a1]
∑M

s=1 f s + [aM − u(M)
l (x)]

∑M
s=1 f

s (3A.30)

The situation now is as summarized in Fig. 3.19. Observe that:

1. When 𝜁 is chosen so that
0 ≤ 𝜁 < 𝜁∗ (3A.31)

then 𝜕g(𝜁 , t)/𝜕t< 0, which means that g(𝜁 , t) is a monotonically decreasing
function with respect to t and, therefore, its maximum value with respect to
t∈ [0, 1] occurs at t* = 0, that is [see Eq. (3A.24)],

g(𝜁, t∗) = max
t∈[0,1]

g(𝜁, t) = g(𝜁, 0) =
(1 − 𝜁 )[aM − u(M)

l (x)]∑M
s=1 f s

(3A.32)

In this case, g(𝜁 , t*) is a monotonically decreasing function with respect to 𝜁
and, therefore, substituting Eq. (3A.30) into (3A.32), we find

inf
0≤𝜁<𝜁∗

g(𝜁, t∗) = lim
𝜁→𝜁∗

g(𝜁, t∗)

=
[u(0)l (x) − a1][aM − u(M)

l (x)]

[u(0)l (x) − a1]
∑M

s=1 f s + [aM − u(M)
l (x)]

∑M
s=1 f

s (3A.33)

0
1ζ*

ζ

∂g(ζ, t)/∂t

Figure 3.19 𝜕g(𝜁 , t)/𝜕t versus 𝜁 .
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2. When 𝜁 is chosen so that
𝜁 = 𝜁∗ (3A.34)

then 𝜕g(𝜁 , t)/𝜕t= 0, which means that g(𝜁 , t) is independent of t. Without loss
of generality, we may set t= 1 (or 0, or any value from 0 to 1); hence,

g(𝜁∗, t∗) = max
t∈[0,1]

g(𝜁∗, t) = g(𝜁∗)

=
[u(0)l (x) − a1][aM − u(M)

l (x)]

[u(0)l (x) − a1]
∑M

s=1 f s + [aM − u(M)
l (x)]

∑M
s=1 f

s (3A.35)

3. When 𝜁 is chosen so that
𝜁∗ < 𝜁 ≤ 1 (3A.36)

then 𝜕g(𝜁 , t)/𝜕t> 0, which means that g(𝜁 , t) is a monotonically increasing
function with respect to t, and, therefore, its maximum value with respect to
t∈ [0, 1] occurs at t* = 1, that is [see Eq. (3A.24)],

g(𝜁, t∗) = max
t∈[0,1]

g(𝜁, t) = g(𝜁, 1) =
𝜁 [u(0)

l (x) − a1]∑M
s=1 f

s (3A.37)

In this case, g(𝜁 , t*) is a monotonically increasing function with respect to 𝜁
and, therefore, substituting Eq. (3A.30) into Eq. (3A.37), we find

inf
𝜁∗<𝜁≤1

g(𝜁, t∗) = lim
𝜁→𝜁∗

g(𝜁, t∗) =
[u(0)l (x) − a1][aM − u(M)

l (x)]

[u(0)l (x) − a1]
M∑
s=1

f s + [aM − u(M)
l (x)]

∑M
s=1 f

s

(3A.38)

Equations (3A.33), (3A.35), and (3A.38) show that in all cases the min-max of
g(𝜁 , t) is achieved when 𝜁 = 𝜁* and this is independent of t, that is,

min
𝜁∈[0,1]

[max
t∈[0,1]

g(𝜁, t)] = g(𝜁∗) =
[u(0)

l (x) − a1][aM − u(M)
l (x)]

[u(0)l (x) − a1]
M∑
s=1

f s + [aM − u(M)
l (x)]

∑M
s=1 f

s

(3A.39)
Substituting g(𝜁*) into Eq. (3A.23), we find

ul(x) − ul(x) ≤ g(𝜁∗)
M∑
s=1

(f
s
− f s) =

[u(0)l (x) − a1][aM − u(M)
l (x)]

∑M
s=1(f

s
− f s)

[u(0)l (x) − a1]
∑M

s=1 f s + [aM − u(M)
l (x)]

∑M
s=1 f

s

(3A.40)
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Using the definitions of u(0)
l (x) and u(M)

l (x), which are given in Eqs. (3.79) and
(3.81), respectively, it follows that Eq. (3A.40) simplifies to

ul(x) − ul(x) ≤
∑M

s=1 f s(as − a1)
∑M

s=1 f
s
(aM − as)∑M

s=1 f s(as − a1) +
∑M

s=1 f
s
(aM − as)

×

∑M
s=1(f

s
− f s)∑M

s=1 f
s∑M

s=1 f s
(3A.41)

Hence

ul(x) ≥ ul(x) −
⎡⎢⎢⎢⎣
∑M

s=1

(
f
s
− f s

)
∑M

s=1 f
s∑M

s=1 f s
×

∑M
s=1 f s(as − a1)

∑M
s=1 f

s
(aM − as)∑M

s=1 f s(as − a1) +
∑M

s=1 f
s
(aM − as)

⎤⎥⎥⎥⎦
(3A.42)

The right-hand side of Eq. (3A.42) is defined as ul(x), that is, ul(x) is as stated in
Eq. (3.85).



CHAPTER 4

Analytical Structure of Various Interval
Type-2 Fuzzy PI and PD Controllers

4.1 INTRODUCTION

A T2 fuzzy controller, like its T1 counterpart, is presently viewed and treated by
most fuzzy control practitioners and researchers as a black box that is a function
generator that produces a desired nonlinear mapping between input and output of
the controller (we call the mapping analytical structure). The analytical structure’s
implicit mathematical representation, u= f(x) as shown in Fig. 1.2, is the nonlin-
ear control solution being sought. In this chapter, innovative techniques capable of
deriving the explicit mathematical representation of f(x) for some common classes
of interval T2 fuzzy controllers of both the Mamdani type and the TSK type will be
presented. Connections between the resulting analytical structures and the conven-
tional nonlinear controllerswill be shown and insightful analyseswill be conducted.
The f(x) of the T2 fuzzy controllers will be compared with those of the compara-
ble T1 fuzzy controllers, and their relative advantages and disadvantages will be
exposed. Based on the exposed analytical structure of the T2 fuzzy controllers,
some design guidelines are developed to assist in determining the controller param-
eters (more than 10).

Numerous techniques have been developed in the literature for analyzing and
designing a wide variety of fuzzy control systems of both the Mamdani and TSK
type. They are mostly for the T1 fuzzy controllers at this point (Feng, 2006),
but a growing number of techniques are for T2 controllers. The literature can be
classified into two groups of methodology: (1) the model-based approach and
(2) the knowledge-based approach, which is a model-free approach. When the
model-based approach is used, the precise mathematical model of the system to
be controlled must be assumed explicitly available, whereas the knowledge-based
approach does not make such an assumption. The models of interest should be
nonlinear because a practical system is always nonlinear. Strictly speaking, a
linear system does not exist—a linear model is an approximate model of the
nonlinear system valid for a region around one of the system operation points.
There is little point to applying fuzzy control, T2 or T1, to a linear model owing
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to the existence of the much more effective linear control theory. While the model
availability assumption makes theoretical development more mathematically
tractable and convenient for the model-based approach, it does not realistically
reflect practical constraints. The fact of the matter is this—it is always challenging
to attain a credible nonlinear mathematical model for most systems in the real
world. This is partially because assuming a plausible mathematical structure for a
given physical system in practice is a tough task to begin with, and validating it is
another demanding task. The pitfall of the model availability assumption holds not
only for fuzzy control but also equally for conventional control. Emerging in the
1990s, this approach provides mathematical convenience at the cost of practicality.
It has produced a large volume of publications; nevertheless, its usefulness in
practice has yet to be confirmed. In short, without knowing the nonlinear model,
many of the model-based analysis and design methods developed are simply
inapplicable.

The first fuzzy controller invented in 1974 was a knowledge-based controller,
which opened a new era of knowledge-based control approach. The underlying
idea was to construct a nonlinear controller without the need of the mathematical
model of the nonlinear system. This approach employed fuzzy sets, fuzzy logic,
fuzzy rules, and fuzzy reasoning to capture, represent, and process human opera-
tor’s control expertise to construct the controller. The knowledge-based approach
works because the behavior and dynamics of the system are reflected in the human
control knowledge and hence are implicitly built into the controller. This approach
has achieved a huge success in a vast variety of real-world applications and com-
mercial products largely because it does not require the system model, making it
possible to develop a product with reduced development time and cost.

After a fuzzy controller, T2 or T1, is constructed or designed, its analytical
structure is implicit [e.g., Eq. (3.68)] because f(x) does not spell out the explicit
relationship between the input variables x and the output variable u. In other words,
it shows there is a relationship but does not reveal exactly what it is. When the
model-based approach utilizes the implicit f(x) to develop a design or analysis
method, it treats the fuzzy controller as a black box function generator capable
of producing the nonlinear mapping between the input and output of the controller
being sought. On the other hand, the knowledge-based approach does not start with
f(x). Rather, it relies on a systematic procedure consisting of a number of steps for
practically constructing f(x) through manipulating, often in a trial-and-error fash-
ion, fuzzy sets, fuzzy rules, fuzzy inference, among other components. For each
component, the developer will face choices. For instance, for the input fuzzy sets
(i.e., the fuzzy sets for fuzzifying the input variables), the developer has to decide
how many of them should be used, what type should be used (e.g., triangular vs.
Gaussian), and whether a mixture of different types should be used. This is just one
of the several components that the developer has to specify (the other components
include the output fuzzy sets and fuzzy rules). Coupled with computer simulation,
this approach often suffices for the practitioner to build a satisfactory fuzzy control
system as a solution to the real-world problem at hand. Importantly, this tactic usu-
ally works even when the mathematical model of the system is not available. Apart
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from the approaches (model-based or knowledge-based), once built, the fuzzy con-
troller remains a black box in that the explicit expression of f(x) is unknown. The
componentswork together to generate a value for f(x) for any given value of x. Obvi-
ously, the explicit expression of f(x) depends on how the components are selected.
Nevertheless, the nature of the implicit f(x) changes little no matter how the com-
ponents are composited.

Either approach is in sharp contrast to the traditional control theories. In con-
ventional control, once a controller is chosen by the developer according to the
system to be controlled, the controller’s analytical structure, linear or nonlinear, is
always explicitly ready for analysis and design of the control system. The linear
and nonlinear control theories have matured with many powerful time-tested anal-
ysis and design schemes. The primary technical difficulty for controller design lies
in how to first select or design f(x) and then determine its parameter values based
on the given system model so that the designed control system performance will
meet the control system user’s performance specifications. The f(x) value is explic-
itly known after the control system design is completed. Control system analysis,
stability, control performance, and other system characteristics are analyzed and
determined based on the explicitly given f(x) and the systemmodel. To bring fuzzy
control to the same level of sophistication and acceptance as the conventional con-
trol theories, fuzzy control needs to overcome two hurdles pertinent only to fuzzy
control and irrelevant to conventional control. The first hurdle is the unavailability
of f(x) in an explicit form after it is designed/constructed, and the second relates
to the fundamental question of whether f(x) can be an arbitrary nonlinear function
(this issue, referred to as fuzzy systems as universal approximators in the literature,
has been extensively addressed for the T1 fuzzy controllers (Ying, 1994a, 1998a)
and somewhat investigated for the T2 controllers (Ying, 2008, 2009). To a large
extent, analytically and rigorously studying fuzzy control, T2 or T1, is inherently
more challenging than studying typical nonlinear control problems. Not explicitly
knowing f(x) puts both the model-based and model-free fuzzy control approaches
in a disadvantageous position because knowing the analytical structures of both the
controller and system can make it possible for the system analysis and design more
precise and effective and less conservative.

No matter if a T2 or T1 fuzzy controller is theoretically designed using a
model-based scheme or is empirically constructed via a model-free method,
revealing controllers’ analytical structure can be significantly beneficial because
we can:

1. Understand how and why the fuzzy controller works in the same sense as we
understand how a conventional controller functions.

2. Find a possible connection between the fuzzy controller and a conventional
controller.

3. Explore more rigorously the differences between the T2 and T1 fuzzy con-
trollers and their relative merits and pitfalls (e.g., control performance and
structural complexity).



134 ANALYTICAL STRUCTURE OF VARIOUS INTERVAL TYPE-2 FUZZY

4. Take advantage of the nonlinear control theory to develop more effective
analysis and design methods for the T2 control system as the fuzzy control
problem has transformed into a nonlinear control problem.

5. Make T2 fuzzy control more acceptable to safety-critical fields such as clin-
ical medicine and nuclear industry where people are reluctant to employ a
black box as a controller.

We stress that the analytical structure of a fuzzy controller should be investi-
gated in such a way that the structure is sensible in the context of control theory.
This is to say that deriving the explicit structure is only a first step, after which
the structure should be represented in a form clearly understandable from a con-
trol theory standpoint to gain the full potential benefits in system analysis and
design.

In the next section, we will provide a brief review of the linear PID, PI, and PD
controllers as most of the T2 fuzzy controllers studied in this chapter are related
to the PI and PD controllers. In Section 4.3, the common components of the T2
fuzzy controllers are defined. In Sections 4.4–4.7, we show various techniques for
deriving the explicit analytical structures of four different types of T2 Mamdani
fuzzy controllers with two input variables and link the resulting structures to the
PI and PD controllers. Section 4.8 provides yet another derivation technique for
a class of T2 TSK fuzzy controllers with two input variables and shows how the
analytical structure obtained ties to the PI and PD controllers. We conduct analysis
on part of the derived analytical structures of the T2 Mamdani fuzzy controllers
in Section 4.9, including their connection to the comparable T1 fuzzy controllers.
Based on the materials in the prior sections, Section 4.10 establishes some design
guidelines for the T2 Mamdani fuzzy controllers. The work in this chapter realizes
the first four benefits listed above to varying extents.

4.2 PID, PI, AND PD CONTROLLERS AND THEIR RELATIONSHIPS

All the fuzzy controllers studied in this chapter have two input variables and are
related to the PI and PD controllers. To facilitate a better understanding of the rest
of this chapter, we provide a brief review of the PID control first.

4.2.1 Two Forms of PID Controller—Position Form and Incremental

Form

The continuous-time linear PID controller in position form (i.e., using full con-
troller output) is described by the following expression:

u(t) = K

(
e (t) + 1

Ti∫
t

0

e(𝜏) d𝜏 + Td
de(t)

dt

)
Here, e(t) is the error signal defined as e(t)= SP(t)− y(t) where SP(t) is the system
output reference signal, and y(t) the output of the system under control; K is gain,
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Ti is integration time, and Td is derivative time. The corresponding discrete-time
position form is

u(k) = K

[
e (k) + T

Ti

k∑
i=0

e(i) +
Td

T
r(k)

]
= Ke(k) + KT

Ti

k∑
i=0

e(i) +
KTd

T
r(k)

= Kpe(k) + Ki

k∑
i=0

e(i) + Kdr(k) (4.1)

where r(k)= e(k)− e(k− 1) is the change of the error, and T is sampling period; and
Kp, Ki, and Kd are proportional-gain, integral-gain, and derivative-gain of the PID
controller, respectively.

The three gains are constants for the linear PID controller. If the value of at least
one of the gains varies with system state, the PID controller becomes nonlinear.
There are various forms of nonlinear PID controllers. For instance, a PID controller
with an antiwindup mechanism is a nonlinear PID controller.

The above PID control algorithms are in position form because they directly
compute the controller output itself. The PID controller is often used in the incre-
mental form, which calculates change of the controller output. Note that at time
k− 1,

u(k − 1) = Kpe(k − 1) + Ki

k−1∑
i=0

e(i) + Kdr(k − 1)

Hence, the incremental form of the PID controller (i.e., using change of controller
output) corresponding to Eq. (4.1) is

Δu(k) = u(k) − u(k − 1) = Kpr(k) + Kie(k) + Kdd(k) (4.2)

where

d(k) = r(k) − r(k − 1) (4.3)

4.2.2 PI and PD Controllers and Their Relationship

In practice, full PID control is not always desired. Instead, partial PID control in
the form of PI or PD control is more effective and appropriate. This is because
the derivative term tends to amplify noise and hence should be avoided if the sys-
tem output is noisy. On the other hand, the integral term can cause slower system
response and larger system overshoot. It should not be included in certain applica-
tions of the PID control. For these reasons, PI control and PD control should not be
merely considered as incomplete PID control. Rather, they are controllers on their
own with distinctive merits in comparison with the full PID control, and they may
be viewed as separate classes of controllers. Indeed, many studies treat PI, PD, and
PID controllers separately and differently.
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When Kd is set to zero in Eq. (4.2), the PID controller becomes a PI controller
in incremental form:

Δu(k) = Kie(k) + Kpr(k) (4.4)

whereas when Ki = 0 in Eq. (4.2), the PID controller reduces to a PD controller in
incremental form:

Δu(k) = Kpr(k) + Kdd(k) (4.5)

A PI controller in incremental form is related to a PD controller in position form.
Letting Ki = 0 in Eq. (4.1), we obtain a PD controller in position form:

u(k) = Kpe(k) + Kdr(k) (4.6)

Now, comparing Eq. (4.6) with (4.4), one sees that the PD controller in position
form becomes the PI controller in incremental form, if (1) e(k) and r(k) exchange,
(2) Kd is replaced by Ki, and (3) Δu(k) and u(k) exchange positions. Furthermore,
comparing Eq. (4.4) with (4.5), the PI controller in incremental form becomes the
PD controller in incremental form, if (1) e(k) is replaced by d(k), and (2) Ki is
replaced by Kd.

These two structural relationships between the PI and PD controllers are impor-
tant for the analytical structure derivation and analyses of the fuzzy PI and PD
controllers in this chapter. Analytical structure derived for the fuzzy PI controller
can directly be extended to the corresponding fuzzy PD controller and vice versa.
All one needs to do is to use proper input and output variables for the fuzzy con-
trollers (we will show how in Section 4.4). Consequently,we will focus on the fuzzy
PI controllers only when presenting a variety of structure derivation techniques.

4.3 COMPONENTS OF THE INTERVAL T2 FUZZY PI AND PD

CONTROLLERS

The interval T2 fuzzy PI controllers are a subset of the T2 FLCs. They employ
two input variables, the error e(k) and the change of the error r(k), and one output
variable u(k) (see Fig. 4.1). Two scaling factors, ke and kr, are used to scale e(k) and
r(k), respectively:

E(k) = kee(k) = ke[SP(k) − y(k)] (4.7)

R(k) = krr(k) = kr[e(k) − e(k − 1)] (4.8)

The output variable u(k) is related to the incremental output Δu(k) and the previous
output u(k− 1):

u(k) = u(k − 1) + Δu(k) (4.9)
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Figure 4.1 Structure of the T2 fuzzy PI controllers.

An intermediate output variable ΔU(k) and its scaling factor kΔU will be needed,
and they are related to Δu(k) through

Δu(k) = kΔUΔU(k) (4.10)

The variables E(k) and R(k) are defined over [L1,R1] and [L2,R2], respectively.

There are N1 interval T2 fuzzy sets, Ã1i, i= 1,… ,N1, defined for E(k) and N2 inter-

val T2 fuzzy sets, Ã2j, j= 1,… ,N2, defined for R(k). They act as a fuzzifier in that
they translate the crisp values of E(k) and R(k) to membership values of the inter-
val T2 fuzzy sets. Their UMFs and LMFs are designated as 𝜇Ã1i

and 𝜇Ã2j
and 𝜇

Ã1i
and 𝜇

Ã2j

, respectively. They meet the requirements set in Definitions 2.11–2.13.

Depending on the configuration in the sections below, ΔU(k) uses either inter-
val T2 fuzzy sets B̃m or T1 fuzzy sets Bm,m= 1,… ,N3, but not both at the same
time. They can be T2 or T1 singleton fuzzy sets. The support of such fuzzy set’s
UMF and LMF is a single point in the universe of discourse of the output variable
Cs

0
+ Cs

1
E(k) + Cs

2
R(k).

The interval T2 fuzzy PI controllers can use either Mamdani fuzzy rules or TSK
fuzzy rules, but not both simultaneously. Based on the notations in Eqs. (3.19),
(3.73), and (3.74), the sth fuzzy rule in the form of Mamdani type, s= 1,… ,M, is

Rs∶ If E(k) is F̃s
1

and R(k) is F̃s
2
, then ΔU(k) is G̃s (4.11)

where F̃s
1
∈ {Ã1i|i = 1, … ,N1}, F̃s

2
∈ {Ã2j|j = 1, … ,N2}, and G̃s ∈ {B̃m|m =

1, … ,N3} (or G̃s ∈ {Bm|m = 1, … ,N3}). A TSK fuzzy rule is

Rs∶ If E(k) is F̃s
1

and R(k) is F̃s
2
, then ΔU(k) = Cs

0
+ Cs

1
E(k) + Cs

2
R(k) (4.12)

where Cs
0
, Cs

1
, and Cs

2
are either all constants or all T1 fuzzy sets.
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Applying the interval T2 fuzzy inference to these rules, the firing interval for
rule Rsof either the Mamdani type or the TSK type is described in Eqs. (3.50) and
(3.51). In this chapter, only the Zadeh AND operator (i.e., the minimum t-norm) is
in use. Therefore, the firing interval for Rs is

F̃s(E(k), R(k)) = [f s(E(k), R(k)), f
s
(E(k), R(k))]

= [min(𝜇
F̃s

1

(E(k)), 𝜇
F̃s

2

(R(k)), min(𝜇F̃s
1
(E(k)), 𝜇F̃s

2
(R(k))] (4.13)

The Zadeh AND operator and the product AND operator are the only two AND
operators widely used in the theory and applications of fuzzy control. As the reader
will see in Sections 4.4–4.8, much of the analytical structure derivation difficulties
can be attributed to the use of the Zadeh AND operator. Deriving the analytical
structure of a fuzzy controller, T1 or T2, with the product AND operator is, rel-
atively speaking, a lot easier. Importantly, the two operators lead to substantially
different (analytical) structures. Consequently, one operator cannot be said to be
better than the other; thus one cannot replace the other.

The center-of-sets type of reducer and the centroid type of reducer will be used
by the T2 controllers in this chapter because they are the most popular type reduc-
ers. For a T2 fuzzy controller with the center-of-sets type of reducer, the interval
weighted-average method represented by Eq. (3.63) will be employed to realize the
type reduction. This method will use the results produced by Eq. (4.13) to reduce
the composite T2 output fuzzy set, G̃, which is formed by the M fuzzy rules, to an
interval T1 fuzzy set. See Section 3.3.2.4 for the details. If a fuzzy controller uses
the centroid type of reducer instead, one will first need to use Eqs. (3.48), (3.49),
(3.56), and (3.57) and min( ) to compute the lower and upper memberships of G̃ as
follows:

𝜇
G̃
(ΔU) =

M
max
s=1

[
min

(
f s (E (k) , R (k)) , 𝜇

G̃s
(ΔU (k))

)]
=

M
max
s=1

[
min

(
𝜇

F̃s
1

(E (k)) , 𝜇
F̃s

2

(R (k)) , 𝜇
G̃s
(ΔU (k))

)]
(4.14)

𝜇G̃ (ΔU) =
M

max
s=1

[
min

(
f
s
(E (k) , R (k)) , 𝜇G̃s (ΔU (k))

)]
=

M
max
s=1

[
min

(
𝜇F̃s

1
(E (k)) , 𝜇F̃s

2
(R (k)) , 𝜇G̃s (ΔU (k))

)]
(4.15)

The resulting memberships will then be used to determine the interval T1 fuzzy set
(Section 2.3.4 provides the details).

The outcome of either type reduction method is the left and right end points
of the interval of the interval T1 fuzzy set for ΔU(k). The interval will then be
converted to a crisp value for ΔU(k) by a defuzzifier. The most popular defuzzifier
is the centroid defuzzifier, which uses the average of the left and right end points
of the interval as its output.
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As an alternative to the interval weighted-average method plus the centroid
defuzzifier, a modified interval weighted-average method and an average defuzzi-
fier were recently developed for the T2 controllers that use T1 or T2 singleton
fuzzy sets as output fuzzy sets (Du and Ying, 2008, 2010). They work together
to implement both the center-of-sets type of reducer and the defuzzification.
The modified interval weighted-average method computes all the M terms in the
numerator of Eq. (3.63), which are usws where us and ws take the terminal values
of the respective intervals in Eq. (3.63). The average defuzzifier then calculates
the average of these M values as its output. One merit of this approach is avoiding
the iterative calculations in finding the left and right end points of the interval T1
fuzzy set required by KM algorithms and the like. The new approach provides
an approximate solution to what a KM algorithm (or other applicable algorithm)
plus the centroid defuzzifier will generate. One advantage associated with this
approach over other existing methods is that it is less challenging to derive the
explicit analytical structure of the T2 fuzzy controller that uses this approach.

Let’s see in more detail how the modified interval weighted-average method
works. When the output fuzzy sets are singleton, either T1 or T2, each firing
interval is an interval with the left and right end points being, respectively, the

lower and upper memberships of the singleton fuzzy set F̃s
1

[i.e., f s and f
s

in Eq.

(4.13)] that has nonzero value only at Gs of the universe of discourse. Referring to

Eq. (3.63), in our case as = bs =Gs and ws = [f s, f
s
]. Instead of using the interval

weighted-average method for the center-of-sets type of reducer, the modified
interval weighted-average method computes the following:

ΔUp(k) =

∑M

s=1
Gsws∑M

s=1
ws

p = 1, 2, … , 2M (4.16)

where ws is either f s or f
s

and hence for a given p, the numerator of Eq. (4.16)

represents one of the total 2M different combinations of f s or f
s
. The 2M values

of ΔUp(k) form a special interval T1 fuzzy set whose membership function is 1

at these 2M locations of the universe and 0 elsewhere. The interval’s left and right
end points are, respectively, the smallest and the largest values of ΔUp(k). After the
type reduction, the average defuzzifier simply calculates the average value of the
2M points to produce the defuzzification result:

ΔU(k) = 1

2M

2M∑
p=1

ΔUp(k) (4.17)

The modified interval weighted-average method works in a similar fashion when
the centroid type of reducer is involved instead. One just needs to replace f s by

𝜇
G̃
(ΔU) and f

s
by 𝜇G̃(ΔU) in Eq. (4.16).

The fuzzy PI and PD controllers in Sections 4.7 and 4.8 employ the center-of-sets
type of reducer, which is implemented by the iterative KM algorithm besides the
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interval weighted-averagemethod.That is, the centroid of Gs, [as, bs], of the sth rule
consequents in Eq. (3.62) are computed by the iterative KM algorithm. The firing

interval [f s, f
s
] in Eq. (3.42) are precomputed first. Then the iterative procedure

in Table 2.3 is adopted to carry out the type reduction. It’s worth noting that the
symbols xi, 𝜃i, N, i, k, cl(L), cr(R), and c′ in Table 2.3 are replaced with as (or bs),
fs, M, s, L (or R), ul, ur, and u′

l (or u′
r) in Sections 4.7 and 4.8, respectively.

We now show different techniques needed for deriving the explicit analytical
structure of various interval T2 fuzzy PI and PD controllers (Table 4.1), all of which
use Zadeh AND operator. The fuzzy controllers studied become more and more
complex in terms of (1) type of input fuzzy sets (from T2 triangular in Section
4.4 to any T2 nonlinear in Section 4.7), (2) number of input fuzzy sets (from 2 in
Section 4.4 to any number in Section 4.7), and (3) type of output fuzzy sets (from
T1 singleton in Section 4.4 to T2 singleton in Section 4.6 to any T1 or T2 fuzzy sets
in Section 4.7). Section 4.8 deals with TSK T2 fuzzy controllers, whereas Sections
4.4–4.7 cover Mamdani T2 fuzzy controllers.

The reader may wonder given a control problem how to choose a T2 fuzzy con-
troller. Here, we assume that the control problem is a nonlinear control problem
(a linear control problem can be easily addressed by the linear control theory)
and the reader has tried conventional control schemes (e.g., the PID control) as
well as the T1 fuzzy control techniques and failed to achieve satisfactory con-
trol performance. The T2 fuzzy controllers are all nonlinear controllers as we will
show below. Because one cannot claim that one nonlinear controller is better or
worse than the other based on their mathematical representations, one T2 fuzzy
controller cannot be deemed to be superior or inferior to the other for the same
reason. Nevertheless, in engineering applications, the simplest solution is usually
considered the best solution. In this spirit, a simpler T2 fuzzy controller should be
preferred. A more complex fuzzy controller is employed only when its use can be
justified. Finally, we stress that it is meaningless to discuss selection of a fuzzy
controller, T1 or T2, without knowing the system to be controlled by the fuzzy
controller.

We will use the fuzzy PI controllers only to present the derivation techniques.
The analytical structure of the corresponding fuzzy PD controllers can easily be
obtained according to the relationship between the PI and PD controllers, and we
will show how to do this.

4.4 MAMDANI FUZZY PI AND PD

CONTROLLERS—CONFIGURATION 11

4.4.1 Fuzzy PI Controller Configuration

This configuration requires T2 triangular input fuzzy sets, T1 singleton output fuzzy
sets, Mamdani fuzzy rules, the center-of-sets type of reducer implemented by the
interval weighted-average method, and the centroid defuzzifier (Table 4.1). More

1Part of the material in this section is adapted from Du and Ying (2010; © 2010, IEEE).
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Figure 4.2 Primary membership functions of the interval T2 fuzzy sets (a) for E(k) and
(b) for R(k). On the primary membership axes, 𝜃1 and 𝜃2 are the distance between 0.5 and
intersection of the upper (or lower) membership functions.

specifically, two interval T2 fuzzy sets, namely Ã11 and Ã12 (Fig. 4.2a), are defined

for E(k) and another two, Ã21 and Ã22 (Fig. 4.2b), are defined for R(k) where Ã11 and

Ã21 are also linguistically named “positive” and Ã12 and Ã22 “negative.”These fuzzy
sets can be considered as parts of trapezoidal T2 fuzzy sets. The primary member-
ships of E(k) and R(k) are bounded by the upper and lower membership functions
that are trapezoidal T1 fuzzy sets— 𝜇Ã11

, 𝜇
Ã11

, 𝜇Ã12
, 𝜇

Ã12

, 𝜇Ã21
, 𝜇

Ã21

, 𝜇Ã22
, and 𝜇

Ã22

.

Design parameters 𝜃1 and 𝜃2 are used to specify different degrees of uncertainties
represented by the T2 fuzzy sets. In Fig. 4.2, because there are two similar right tri-
angles, 0.5/L1 = 𝜃1/P1, and hence P1 = 2L1𝜃1. Similarly, P2 = 2L2𝜃2. Being of the
interval type, the secondary membership functions of these T2 fuzzy sets are all
equal to 1 for the entire universes of the discourses.

Four T1 singleton fuzzy sets are defined for ΔU(k). They have nonzero member-
ship value only at ΔU(k)= b1, b2, b3, and b4, respectively, as shown in Fig. 4.3. The
order of the four values in the figure represents one of the many possibilities and
is illustrative only. Their actual relative positions depend on the values assigned by
the controller designer.
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ΔU(k)
b1b2b3b4

B1B2B3B4

1

Figure 4.3 Four T1 singleton fuzzy sets for ΔU(k). The nonzero memberships are 1.

Because there are two fuzzy sets for E(k) and two fuzzy sets for R(k), the fol-
lowing four fuzzy rules are employed to cover all the four different combinations
of Bm and R(k):

R1∶ If E(k) is Ã11 and R(k) is Ã21, then ΔU(k) is B1.

R2∶ If E(k) is Ã11 and R(k) is Ã22, then ΔU(k) is B2.

R3∶ If E(k) is Ã12 and R(k) is Ã21, then ΔU(k) is B3.

R4∶ If E(k) is Ã12 and R(k) is Ã22, then ΔU(k) is B4.

For set-point control problems [i.e., SP(k) is either a constant or changes in a stair
step fashion], which is one of the most commonly encountered control problems
in practice, the four rules should be adequate in many cases as there are only four
different scenarios, each of which is taken care of by one of the rules if the values
of b1, b2, b3, and b4 are proper (Ying, 2000; Ying et al., 1990) (Fig. 4.4). Let’s see a
simple example where b1 > 0, b2 = b3 = 0, and b4 < 0. Rule R1 covers the situation
in which system output is below the target output and is still decreasing. Controller

Time (k)

System output y(k)

Set point

R
u

le
 R

4

R
u

le
 R

3

R
u

le
 R

1

R
u

le
 R

2

R
u

le
 R

2

0

y(0)

Figure 4.4 Illustration of how the four fuzzy rules can cover all possible control needs of
a set-point control problem.
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output should be increased. Rule R4 deals with the opposite circumstance—system
output is larger than the target level and is still increasing. Logically, controller
output should be reduced. The two remaining scenarios are: (1) system output is
below the target level but is increasing, and (2) system output is above the target
output but is decreasing. In either case, it is sensible to let controller output stay at
the same level, hoping system output will land on the target level smoothly on its
own. This is what rules R2 and R3 can achieve.

When applying the interval T2 fuzzy inference to these rules, each of the T1
fuzzy sets in the rule consequents needs to be treated as a special interval T2 fuzzy
set. Specifically, it can be regarded as a special interval T2 fuzzy set whose upper
and lower primary membership values are both 1. The firing intervals as a result of
Zadeh AND operation are

F̃1 =
[
f 1, f

1
]
=

[
min

(
𝜇

Ã11

, 𝜇
Ã21

)
, min

(
𝜇Ã11

, 𝜇Ã21

) ]
(4.18)

F̃2 =
[
f 2, f

2
]
=

[
min

(
𝜇

Ã11

, 𝜇
Ã22

)
, min

(
𝜇Ã11

, 𝜇Ã22

) ]
(4.19)

F̃3 =
[
f 3, f

3
]
=

[
min

(
𝜇

Ã12

, 𝜇
Ã21

)
, min

(
𝜇Ã12

, 𝜇Ã21

) ]
(4.20)

F̃4 =
[
f 4, f

4
]
=

[
min

(
𝜇

Ã12

, 𝜇
Ã22

)
, min

(
𝜇Ã12

, 𝜇Ã22

) ]
(4.21)

The center-of-sets type of reducer is implemented by the interval
weighted-average method. The centroid defuzzifier is used.

4.4.2 Method for Deriving the Analytical Structure

The key to the mathematical structure derivation of the fuzzy controller is to deter-
mine the outcomes of the min( ) operations in the four rules. The nature of this issue
is the same as what one encounters when deriving the analytical structure of the T1
fuzzy controllers whose fuzzy rules involve the Zadeh AND operator (Ying, 2000;
Ying, et al., 1990). The principle of the structure-deriving technique in Ying et al.
(1990) is readily applicable to the T2 fuzzy controller and indeed will be utilized
to develop the new derivation method for the T2 controller.

Without loss of generality, we consider the case when E(k) is inside
[−L1 −P1, L1 +P1] and R(k) is inside [−L2 −P2, L2 +P2] (Fig. 4.2). The
structure expressions for the remaining cases [i.e., when E(k)∈ (−∞,− L1 −P1) or
(L1 +P1,∞), R(k)∈ (−∞, −L2 −P2) or (L2 +P2, ∞)] can be derived similarly. To
derive the explicit expressions, we first need to determine the left and right mem-
bership end points of the firing intervals in Eqs. (4.18)–(4.21). In each of the min( )
expressions, the membership values vary with E(k) and R(k). Therefore, to decide
which membership value is smaller [i.e., the outcome of the min( )], one must
divide the two-dimensional input space [−L1 −P1, L1 +P1]× [−L2 −P2, L2 +P2]
into a number of regions so that for each region, either the membership value of
E(k) is always greater than that of R(k) or it is the other way around, but not both.
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Such a region is called an IC (input combination). Figure 4.5 shows the input
space division results for R1 to R4. Note that the axes of E(k) and R(k) in the figure
are utilized to just indicate some key points of E(k) and R(k). The axes do not
form a coordinate system. This is also the case for some of the other figures in this
chapter.

As an example, Fig. 4.5a shows the region divisions for f
1
= min(𝜇Ã11

, 𝜇Ã21
)

of R1. When E(k) and R(k) are in the IC-labeled f
1

IC1, 𝜇Ã11
= 1 and 𝜇Ã21

= 1.

Hence, f
1
= 1, which is marked in IC1 in the figure. In f

1
IC2, 𝜇Ã11

< 𝜇Ã21
, hence

f
1
= 𝜇Ã11

. Finally, in f
1

IC3, 𝜇Ã11
> 𝜇Ã21

, leading to f
1
= 𝜇Ã21

. On the boundaries
of the two adjacent regions, either result can be used as they are equal.

Figure 4.5 only covers what happens to the min( ) operation when each rule
is evaluated one by one. Nevertheless, at any time k, all four rules are actually
executed at the same time. Thus, they should be considered simultaneously. This
amounts to superimposing all eight figures in Fig. 4.5 (Ying 2006). The number and
shape of the final region divisions after the superimposing depend on the parameter
values of the input fuzzy sets. For example when L1 >L2 and L1 × 𝜃1 =L2 × 𝜃2 (i.e.,
P1 =P2), the superimposing result is a total of 25 ICs as shown in Fig. 4.6a. The
results of the left and right end points of the firing intervals in Eqs. (4.18)–(4.21)
for these 25 ICs are listed in Table 4.2. If we suppose that L1 >L2 but 𝜃1 = 𝜃2

(i.e., P1 ≠P2), the superimposing will create 16 ICs instead (Fig. 4.6b). The
corresponding left and right endpoints of the intervals are the same as those of the
first 16 of the 25 ICs in Table 4.2. Obviously, the superimposing result depends on
the fuzzy controller’s configuration and hence varies from controller to controller.

For each IC, put the eightmembership functions (i.e., the eight entries in a row in
Table 4.2) into Eq. (4.16), and after some mathematical manipulations, the explicit
expressions of ΔUp(k), p= 1,… , 16, for that IC will be obtained. Table 4.3 illus-
trates mathematically ΔUp(k) for IC1 in Fig. 4.6b. It is easy to see that the 16
expressions in Table 4.3 share the same mathematical structure below [note that
E(k)= kee(k) and R(k)= krr(k)]:

ΔUp(k) =
𝜑p

1
kee(k) + 𝜑p

2
krr(k) + 𝜑p

3

𝜉p
1
kee(k) + 𝜉p

2
krr(k) + 𝜉p

3

(4.22)

where 𝜑p
k and 𝜓p

k , k= 1, 2, 3, are constants in the IC. Their values not only depend
on the design parameters of the fuzzy controller (e.g., L1, L2, kΔU, and bm) but also
on IC. That means their values may be different in different ICs. ΔUp(k) for the
rest of the 15 ICs confirm to this pattern because both the denominator and the
numerator of Eq. (4.16) are always linear functions of e(k) and/or r(k).

Recall that the centroid defuzzifier coupled with the interval weighted-average
method produces

ΔU(k) =
ΔUmin

p (k) + ΔUmax
p (k)

2
(4.23)
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Figure 4.5 ICs for the upper and lower bounds of each of the four fuzzy rules.

Figures (a)–(h) correspond to f
1
, f 1, f

2
, f 2, f

3
, f 3, f

4
, and f 4 in Eqs. (4.18)–(4.21),

respectively.



MAMDANI FUZZY PI AND PD CONTROLLERS—CONFIG.1 147

−L2 + P2

−L2 − P2

L2 + P2

μA12
~

μA22
~μA22

~

μA12
~

f4_IC2:

f4
_IC1:

f4
_IC3:

R(k)

E(k)

1

−L1 − P1 −L1 + P1 L1 + P1

L2 − P2

−L2 − P2

L2 + P2

μA22
~

μA12
~

μA22
~

μA12
~

f4
_IC2:

f4
_IC1:

f4 _IC3:

R(k)

E(k)

0

−L1 − P1 L1 − P1 L1 + P1

(g) (h)

Figure 4.5 (Continued)

where ΔUmin
p (k) and ΔUmax

p (k) are, respectively, the minimum value and maxi-
mum value of the 16 ΔUp(k) at time k. It is important to emphasize that unlike

most studies in the literature, ΔUp(k), ΔUmin
p (k), and ΔUmax

p (k) in Eq. (4.23) are
all mathematical expressions, as opposed to numerical values. This also holds true
for the other four controller configurations in this chapter, and the reader needs
to keep it in mind. Because ΔUmin

p (k) and ΔUmax
p (k) depend on the values of the

two input variables, ΔU(k) varies with k because the input variables change with
time. For any given input values, we can always determine which of the 16 ΔUp(k)

expressions are ΔUmin
p (k) and ΔUmax

p (k) by plugging the input values into the 16

expressions. The expressions producing the minimum and maximum are ΔUmin
p (k)

and ΔUmax
p (k), respectively. This issue will be discussed more after Theorem 4.1 is

established below. At the current stage, knowing the fact that one of the 16 ΔUp(k)

is ΔUmin
p (k) and another ΔUmax

p (k) is sufficient to continue our derivation. Putting
Eq. (4.22) into (4.23) will lead to the result in the form of

Δu(k) = 1

2

2∑
j=1

KΔU

𝜑j
1
kee(k) + 𝜑j

2
krr(k) + 𝜑j

3

𝜓 j
1
kee(k) + 𝜓 j

2
krr(k) + 𝜓 j

3

where j= 1 and j= 2 are for ΔUmin
p (k) and ΔUmax

p (k), respectively (the two p values
corresponding to j= 1 and j= 2 can always be found). Designating

Kp(e(k), r(k)) = 1

2

2∑
j=1

kΔUkr𝜑
j
2

𝜓 j
1
kee(k) + 𝜓 j

2
krr(k) + 𝜓 j

3

Ki(e(k), r(k)) = 1

2

2∑
j=1

kΔUke𝜑
j
1

𝜓 j
1
kee(k) + 𝜓 j

2
krr(k) + 𝜓 j

3
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TABLE 4.2 Left and Right End Points of Four Firing Intervals in
Eqs. (4.18)–(4.21) for IC1–IC25 Shown in Fig. 4.6

Rule 1 Rule 2 Rule 3 Rule 4

IC No. f
1

f 1 f
2

f 2 f
3

f 3 f
4

f 4

1 𝜇Ã21
𝜇

Ã21

𝜇Ã22
𝜇

Ã22

𝜇Ã12
𝜇

Ã12

𝜇Ã12
𝜇

Ã12

2 𝜇Ã11
𝜇

Ã11

𝜇Ã22
𝜇

Ã22

𝜇Ã12
𝜇

Ã12

𝜇Ã22
𝜇

Ã22

3 𝜇Ã11
𝜇

Ã11

𝜇Ã11
𝜇

Ã11

𝜇Ã21
𝜇

Ã21

𝜇Ã22
𝜇

Ã22

4 𝜇Ã21
𝜇

Ã21

𝜇Ã11
𝜇

Ã11

𝜇Ã21
𝜇

Ã21

𝜇Ã12
𝜇

Ã12

5 1 𝜇
Ã21

𝜇Ã22
0 𝜇Ã12

0 𝜇Ã12
0

6 1 𝜇
Ã11

𝜇Ã22
0 𝜇Ã12

0 𝜇Ã22
0

7 𝜇Ã11
0 𝜇Ã22

0 1 𝜇
Ã12

𝜇Ã22
0

8 𝜇Ã11
0 𝜇Ã11

0 1 𝜇
Ã21

𝜇Ã22
0

9 𝜇Ã11
0 𝜇Ã11

0 𝜇Ã21
0 1 𝜇

Ã22

10 𝜇Ã11
0 𝜇Ã11

0 𝜇Ã21
0 1 𝜇

Ã12

11 𝜇Ã21
0 1 𝜇

Ã11

𝜇Ã21
0 𝜇Ã12

0

12 𝜇Ã21
0 1 𝜇

Ã22

𝜇Ã12
0 𝜇Ã12

0

13 𝜇Ã21
𝜇

Ã21

𝜇
Ã21

𝜇
Ã22

𝜇Ã12
0 𝜇Ã12

0

14 𝜇Ã11
𝜇

Ã11

𝜇
Ã21

0 𝜇Ã12
𝜇

Ã12

𝜇
Ã21

0

15 𝜇Ã11
0 𝜇Ã11

0 𝜇Ã21
𝜇

Ã21

𝜇
Ã21

𝜇
Ã22

16 𝜇Ã21
0 𝜇Ã11

𝜇
Ã11

𝜇Ã21
0 𝜇Ã12

𝜇
Ã12

17 𝜇Ã11
𝜇

Ã21

𝜇
Ã21

0 𝜇Ã12
𝜇

Ã12

𝜇Ã12
0

18 𝜇Ã11
𝜇

Ã11

𝜇Ã11
0 𝜇Ã12

𝜇
Ã21

𝜇
Ã21

0

19 𝜇Ã11
0 𝜇Ã11

𝜇
Ã11

𝜇Ã21
0 𝜇Ã12

𝜇
Ã22

20 𝜇Ã21
0 𝜇Ã11

𝜇
Ã22

𝜇Ã12
0 𝜇Ã12

𝜇
Ã12

21 𝜇Ã11
𝜇

Ã21

𝜇
Ã21

𝜇
Ã22

𝜇Ã12
𝜇

Ã12

𝜇Ã12
𝜇

Ã22

22 𝜇Ã11
𝜇

Ã11

𝜇Ã11
𝜇

Ã22

𝜇Ã12
𝜇

Ã21

𝜇
Ã21

𝜇
Ã22

23 𝜇Ã11
𝜇

Ã21

𝜇Ã11
𝜇

Ã11

𝜇Ã21
𝜇

Ã21

𝜇Ã12
𝜇

Ã22

24 𝜇Ã21
𝜇

Ã21

𝜇Ã11
𝜇Ã22

𝜇Ã12
𝜇

Ã21

𝜇Ã12
𝜇

Ã12

25 𝜇Ã11
𝜇

Ã21

𝜇Ã11
𝜇Ã22

𝜇Ã12
𝜇

Ã21

𝜇Ã12
𝜇Ã22
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Figure 4.6 Division of the input space when the four rules are considered simultaneously
(the numbers represent the IC numbers): (a) when L1 > L2 and P1 = P2 and (b) when L1 >
L2 and P1 > P2.

𝛿(e(k), r(k)) = 1

2

2∑
j=1

kΔU𝜑
j
3

𝜓 j
1
kee(k) + 𝜓 j

2
krr(k) + 𝜓 j

3

then

Δu(k) = Kp(e(k), r(k)) ⋅ r(k) + Ki(e(k), r(k)) ⋅ e(k) + 𝛿(e(k), r(k)) (4.24)

This expression represents a nonlinear PI controller in incremental form with
variable proportional gain and integral gain plus a variable control offset term
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𝛿(e(k), r(k)). Notice that the denominator of 𝛿(e(k), r(k)) can have e(k) or r(k) or
both. But the numerator cannot have either variable. This is an important require-
ment, or Eq. (4.24) may not be unique as one may move part of the first or second
term in Eq. (4.24), if it has more than one term in the numerator, into 𝛿(e(k), r(k)).

Recall that the structure of the linear PD controller in position form is the same as
that of the linear PI controller in incremental form. Therefore, if U(k) is employed
in the four fuzzy rules instead of ΔU(k), the result will be a nonlinear PD controller
with variable proportional gain and derivative gain plus a variable offset term:

u(k) = Kp(e(k), r(k)) ⋅ e(k) + Kd(e(k), r(k)) ⋅ r(k) + 𝛿(e(k), r(k))

where the mathematical expressions of Kp(e(k), r(k)) and Kd(e(k), r(k)) are exactly
the same asKi(e(k), r(k)) andKp(e(k), r(k)) in Eq. (4.24), respectively. These results
can be summarized formally as in Theorem 4.1.

THEOREM 4.1 The T2 fuzzy PI (or the corresponding PD) controller in this
section is structurally equivalent to a nonlinear PI (or PD) controller with variable
gains and a variable control offset.

Usually, after a theorem is stated, one would provide a proof. In this chapter,
we do not wish to use this format. Rather, we choose to first give sufficient explicit
information that supports a theorem and then formally describe the theorem. Our
approach improves readability at the expense of rigor. (Based on the material pre-
sented above, it is obvious that a rigorous proof of can be carried out. But the
process will be long and tedious as we will have to prove the analytical structure
for each and every IC.)

In light of the theorem, it would be interesting for the reader to know that
many T1 fuzzy PI (or PD) controllers are also equivalent to nonlinear PI (or PD)
controllers with variable proportional gain and integral gain (or derivative gain)
(Ying, 1993a, 1998b, 1998c). More discussion in this regard will be provided in
Section 4.9.

Even though the forms of the explicit structures of the fuzzy PI and PD con-
trollers have been revealed [e.g., Eq. (4.24)], there are two issues remaining: (1)
For any point in the input space, we need to determine which of the 16 ΔUp(k) is

ΔUmin
p (k) or ΔUmax

p (k) at any time k, and (2) different parts of some of the ICs found

based on the min( ) operations may have different ΔUmin
p (k) [and/or ΔUmax

p (k)]. The
second issue rises due to the nature of the IC formation—an IC is formed by com-
paring the two membership functions of the input fuzzy sets in a fuzzy rule. The
process does not involve ΔU(k) and consequently does not guarantee the unique-
ness ofΔUmin

p (k) [and/orΔUmax
p (k)] in the IC.Therefore,whenever the second issue

becomes relevant to an IC, the IC will need to be divided into smaller ICs in such a
way that each of the smaller ICs has the same ΔUmin

p (k) [and/or ΔUmax
p (k)]. Resolv-

ing either issue analytically seems to be difficult and remains a research topic.
Alternatively, one can attain numerical solutions by writing a (simple) computer
program, preferably using a symbolic software package, such as Mathematica or
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MATLAB Symbolic Math Toolbox, to determine, at each point of the input space,
which ΔUp(k) is ΔUmin

p (k) or ΔUmax
p (k). The connected adjacent points with the

same expression of [ΔUmin
p (k) + ΔUmax

p (k)]∕2 collectively form an additional new
IC. Initially, the numbers and shapes of these additional ICs’ boundaries found
may vary with the number of points involved. This is because at some points, more
than one ΔUp(k) may have the same ΔUmin

p (k) or ΔUmax
p (k) value. To differentiate

between such points, one needs to check what ΔUmin
p (k) [or ΔUmax

p (k)] is for its

immediately surrounding points. If they employ the same ΔUmin
p (k) [or ΔUmax

p (k)]
as the point does, then assign that ΔUmin

p (k) [or ΔUmax
p (k)] to that point. This pro-

cedure continues until the numbers and shapes of the new ICs no longer vary with
the number of points used (obviously, the more points are used, the smoother the
boundaries of the ICs will be). At that time, the new IC boundaries found can be
regarded as the underlying ones and the total number of ICs (the original ICs plus
the additional ICs) will be the smallest. In an IC, ΔUmin

p (k) and ΔUmax
p (k) can then

be substituted into Eq. (4.23) to derive the fuzzy controller’s analytical structure
for that IC.

We should point out that the derivation technique as well as the derived analyt-
ical structure and its connection to the PI and PD controllers are equally valuable.
This is not only true for the present section but also for the related sections below.
The derived structure may seem to be mathematically complex. This, however, is
a genuine description of the T2 fuzzy controller. The derivation technique itself is
rigorous—there is no omission or approximation in the derivation process.

In this section, the T2 fuzzy controller is shown to be a nonlinear PI (or PD)
controller with variable gains and a variable control offset term. This is a step
forward—one can now understand the nature of the T2 fuzzy controller from a
conventional control theory standpoint. Before the analytical structure has been
revealed, the fuzzy controller functioned as a number-crunching blackbox—it took
values of input variables and computed an output value. The entire process was
numerical, not analytical (i.e., symbolic). Another value of the analytical structure
derivation is that it tells us how restrictive a T2 fuzzy controller is. That is, it reveals
what kinds of nonlinear control laws it can and cannot produce. This is not even an
issue for conventional nonlinear control theory as a controller can have any mathe-
matical representation. Any type of fuzzy controller does not nearly have this kind
of flexibility. Yet another benefit of having the analytical structure is that it enables
one to rigorously compare it with the analytical structure of the comparable T1
fuzzy controller. We will show how to do so in Section 4.9.1.

It is possible to use the derived analytical structure for further analysis (e.g.,
stability) and system design, which should be viewed as a bonus. This will certainly
require nonlinear control theory and is open research issues.

Example 4.1 A fuzzy controller is constructed using the configuration given in
Section 4.4.1. More specifically, it uses the following parameters: 𝜃1 = 𝜃2 = 0.1,
L1 = L2 = 1, b1 = 1, b2 = b3 = 0, and b4 =− 1. Also E(k)∈ [−1.2, 1.2] and
R(k)∈ [−1.2, 1.2]. Determine the analytical structure of this controller.
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The variableΔUp(k) was first derived for this fuzzy controller.Table 4.3 showing
the 16 ΔUp(k) for IC1 when the parameter setting is general is used to illustrate this
particular example. Putting the parameter values specified for this example into
Table 4.3 will generate the 16 ΔUp(k) for IC1 for this example.

The intervals of the input variables, [−1.2, 1.2], were divided in the same way
to create the following points in the intervals: − 1.2,− 1.18,− 1.16,… ,1.18, 1.2
(there were 121 such points in total for each variable). In the E(k)–R(k) coordinate
system, draw a line parallel to the R(k) axis that goes through each of the 121 points
of E(k). Also, draw a line that is parallel to the E(k) axis and passes through each of
the 121 points of R(k). These 242 lines formed a 2D grid of 121× 121 (=14, 641)
points. A MATLAB program was developed to determine at each of the grid points
(1) the ICs and (2) ΔUmin

p (k) and ΔUmax
p (k). Twenty-four ICs shown in Fig. 4.7

were found (points with the same gray level form an IC). For each IC, ΔUmin
p (k)

and ΔUmax
p (k) are listed in Table 4.4. The MATLAB programs producing Fig. 4.7a

and Table 4.4 are available for the reader to download. As a result, the analytical
structure is readily derivable, which is [ ΔUmin

p (k) + ΔUmax
p (k)]/2. One may notice

that the ICs as well as their analytical structure expressions are symmetrical with
respect to the origin, leading to similar symmetry of the controller output.

The reader may wonder how he/she can know for sure whether the analytical
structure of a fuzzy controller derived in this chapter is correct? A more general and
practical question is how can the reader validate the analytical structure of a fuzzy
controller of his/her own configuration that he/she has derived using the method
presented in this chapter? The easiest way for validation is to write a computer pro-
gram using a programming language such as MATLAB, Mathematica, Maple, C,
C++, Java, and so on. Part A of the program will implement the fuzzy controller as
the blackbox controller by constructing it through the controller components (e.g.,
input and output fuzzy sets and fuzzy rules). Part B of the program will implement
the derived input–output mathematical expressions of the same fuzzy controller.
Then, compare the controller output values computed by parts A and B of the pro-
gram for arbitrarily selected points in the input space (the quantity is chosen by the
reader). If the two output values are always identical for the same input point, the
derived input–output expressions are correct. Otherwise, there is something wrong
with the derivation. This approach works for any T1 as well as T2 fuzzy controllers.

4.5 MAMDANI FUZZY PI AND PD

CONTROLLERS—CONFIGURATION 22

This configuration consists of T2 triangular input fuzzy sets, T1 singleton output
fuzzy sets, Mamdani fuzzy rules, the center-of-sets type of reducer implemented
via the modified interval weighted-average method, and the average defuzzifier
(Table 4.1). The differences between this configuration and the configuration in
Section 4.4 are the type of reducer implementation method and defuzzifier.

2Part of the material in this section is adapted from Du and Ying (2010; © 2010, IEEE).
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Figure 4.7 Division of the input space (a) ICs found by the MATLAB program and
(b) numbering the ICs in (a).
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TABLE 4.4 𝚫Umin
p (k) and 𝚫Umax

p (k) for IC1–IC24
Shown in Fig. 4.7

IC No. ΔUmin
p (k) ΔUmax

p (k)

1
−5E(k) − 5R(k) + 2

10R(k) − 22

−5E(k) − 5R(k) − 2

10R(k) − 18

2
−5E(k) − 5R(k) + 2

10E(k) − 22

−5E(k) − 5R(k) − 2

10E(k) − 18

3
5E(k) + 5R(k) − 2

10R(k) + 18

5E(k) + 5R(k) + 2

10R(k) + 22

4
5E(k) + 5R(k) − 2

10E(k) + 18

5E(k) + 5R(k) + 2

10E(k) + 22

5
−5E(k) − 5R(k) + 2

10R(k) − 22
1

6
−5E(k) − 5R(k) + 2

10E(k) − 22
1

7
−5E(k) + 6

5E(k) + 5R(k) − 10
0.5R(k)+ 0.6

8 0.5E(k)− 0.6
5R(k) + 6

5E(k) + 5R(k) + 10

9 − 1
5E(k) + 5R(k) + 2

10R(k) + 22

10 − 1
5E(k) + 5R(k) + 2

10E(k) + 22

11 0.5R(k)− 0.6
5E(k) + 6

5E(k) + 5R(k) + 10

12
−5R(k) + 6

5E(k) + 5R(k) − 10
0.5E(k)+ 0.6

13
−5E(k) − 5R(k) + 2

10E(k) − 22
0.5R(k)+ 0.6

14 0.5E(k)− 0.6
5E(k) + 5R(k) + 2

10R(k) + 22
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TABLE 4.4 (Continued)

IC No. ΔUmin
p (k) ΔUmax

p (k)

15 0.5R(k)− 0.6
5E(k) + 5R(k) + 2

10E(k) + 22

16
−5E(k) − 5R(k) + 2

10R(k) − 22
0.5E(k)+ 0.6

17 0.5E(k)− 0.6
5E(k) + 5R(k) + 2

5R(k) + 14

18 0.5R(k)− 0.6
5E(k) + 5R(k) + 2

5E(k) + 14

19
−5E(k) − 5R(k) + 2

5R(k) − 14
0.5E(k)+ 0.6

20
−5E(k) − 5R(k) + 2

5E(k) − 14
0.5R(k)+ 0.6

21
5E(k) + 5R(k) − 2

10R(k) + 18

5E(k) + 5R(k) + 2

10R(k) + 18

22
5E(k) + 5R(k) − 2

10E(k) + 18

5E(k) + 5R(k) + 2

10E(k) + 18

23
−5E(k) − 5R(k) + 2

10R(k) − 18

−5E(k) − 5R(k) − 2

10R(k) − 18

24
−5E(k) − 5R(k) + 2

10E(k) − 18

−5E(k) − 5R(k) − 2

10E(k) − 18

Let us discuss how to derive the analytical structure of a T2 fuzzy PI
controller that is a little bit different from the one in the last section. The main
difference is the type-reducer implementation—it uses the modified interval
weighted-average algorithm instead of the interval weighted-average algorithm.
The structure-deriving technique in the previous section can be fully utilized up to
the step before type reduction. The center-of-sets type of reducer with the average
defuzzifier produces

Δu(k) = kΔU ΔU(k) = 1

16

16∑
p=1

kΔU ΔUp(k) (4.25)
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Keeping Eq. (4.22) in mind, Eq. (4.25) can be written as

Δu(k) = 1

16

16∑
p=1

kΔU

𝜑p
1
kee(k) + 𝜑p

2
krr(k) + 𝜑p

3

𝜓p
1
kee(k) + 𝜓p

2
krr(k) + 𝜓p

3

(4.26)

Let

Kp(e(k), r(k)) = 1

16

16∑
p=1

kΔUkr𝜑
p
2

𝜓p
1
kee(k) + 𝜓p

2
krr(k) + 𝜓p

3

Ki(e(k), r(k)) = 1

16

16∑
p=1

kΔUke𝜑
p
1

𝜓p
1
kee(k) + 𝜓p

2
krr(k) + 𝜓p

3

𝛿(e(k), r(k)) = 1

16

16∑
p=1

kΔU𝜑
p
3

𝜓p
1
kee(k) + 𝜓p

2
krr(k) + 𝜓p

3

then

Δu(k) = Kp(e(k), r(k)) ⋅ r(k) + Ki(e(k), r(k)) ⋅ e(k) + 𝛿(e(k), r(k)) (4.27)

which is a nonlinear PI controller in incremental form with variable propor-
tional-gain Kp(e(k), r(k)), variable integral-gain Ki(e(k), r(k)), and variable control
offset 𝛿(e(k), r(k)). The following conclusion is obvious.

THEOREM 4.2 The T2 fuzzy PI (or the corresponding PD) controller in this
section is structurally equivalent to a nonlinear PI (or PD) controller with variable
gains and a variable control offset.

When introducing the average center-of-sets type of reducer in Section 4.3, it
was pointed out that it generated an output value that approximated the output value
produced by the center-of-sets type of reducer using the interval weighted-average
algorithm. As a demonstration, let us see the simple comparison example below.

Example 4.2 We construct two fuzzy controllers using the settings in Section 4.1.
One fuzzy controller uses the center-of-sets type reducer implemented by the
modified interval weighted-average method and the average defuzzifier, whereas
the other employs the center-of-sets type of reducer involving the interval
weighted-average algorithm plus the centroid defuzzifier. Their parameter settings
are 𝜃1 = 𝜃2 = 0.1, L1 =L2 = 1, b1 = 1, b2 = b3 = 0, and b4 =− 1. Our goal is to
compare output of these two fuzzy controllers.

The assumptions b1 = 1, b2 = b3 = 0, and b4 =− 1 are reasonable. Referring to
Fig. 4.4, the controller output should be increased if the system output is in the
region governed by rule R1 and decreased in the area managed by rule R4. It is sen-
sible that the magnitudes of the increment and decrement are equal. In the regions



MAMDANI FUZZY PI AND PD CONTROLLERS—CONFIG.2 159

related to the other two rules, no change to the controller output is necessary. One
observes from Fig. 4.8 that only a marginal difference exists in controller out-
put between these two fuzzy PI controllers whose configurations are exactly the
same except the type of reducer implementation and defuzzifier. The maximum
difference is 2.83%. The numbers and shapes of the ICs (not shown) are somewhat
different, which are not important.

We wish to differentiate the role that the analytical structure plays from that of
the 3D control surface does (e.g., Fig. 4.8) because some people might feel that
viewing the 3D surface is a good way to analyze or design the fuzzy controller,
T1 or T2, and that the analytical structure does not offer much more value. This is
a misconception. While a 3D control surface can be conveniently generated by a
computer program without knowing the analytical structure, the surface can play
only a rather limited role. First of all, it works only for a fuzzy controller with
one or two input variables. In contrast, analytical structure derivation methodol-
ogy can, in principle, be extended to fuzzy controllers with three or more input
variables. (The caveat for doing the three-variable cases is that they will be signif-
icantly more challenging than doing the two-variable cases because the ICs will
be three-dimensional. Involving more than three variables will be even harder,
although theoretically still possible.) Second, 3D surface’s usefulness is mainly
to permit gross visual inspection of the controller output, which might be help-
ful after the fuzzy controller is constructed. The 3D surface does not, and cannot,
expose the underlying control algorithm (i.e., the mathematical input–output rela-
tionship) responsible for the surface. The only exception is that if the surface is a
plane, the computer program (not human vision) will be able to determine this to
be the case. Nevertheless, that the surface is a plane means a linear controller; but
(almost) all the T2 fuzzy controllers are nonlinear controllers. A rigorous controller
analysis or design cannot be meaningfully performed based on viewing the 3D sur-
face. This is true even when the surface is a plane. A case in point is the linear PI
or PD controller whose control surface is a plane. The slope of the plane is deter-
mined by the controller’s two gain parameters. Designing the PI or PD controller
means finding suitable gain values. Hundreds of research papers have been pub-
lished, and are still being published, to develop new and better methods to compute
the gain values, none of which utilizes 3D control plane viewing. The nonlinear
control theory can be applied to analyzing or designing the fuzzy controllers using
the analytical structures and the process is rigorous.

Another difference between these two fuzzy PI controllers is the way that the
gains vary. Look at the central area formed by [−L1 +P1, L1 −P1]× [−L2 +P2, L2

−P2]. According to Fig. 4.6, the variable gains of the fuzzy PI controller
with the center-of-sets type of reducer implemented via the modified interval
weighted-average method plus the average defuzzifier is symmetrical about the
E(k) axis, the R(k) axis, and the origin of the input space, whereas the fuzzy
PI controller with the center-of-sets type of reducer realized by the interval
weighted-average method plus the centroid defuzzifier is symmetrical only about
the origin (see Fig. 4.7). From a control standpoint, all these symmetries are
sensible and useful for different control objectives.
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Figure 4.8 (a) Output of the T2 fuzzy PI controller using the center-of-sets type reducer
implemented by the interval weighted-average method and the centroid defuzzifier. (b) Out-
put difference between the controller uses the center-of-sets type reducer implemented by
the modified interval weighted-average method and the average defuzzifier, and the con-
troller uses the center-of-sets type reducer implemented by the interval weighted-average
method and the centroid defuzzifier.
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For a control developer wanting to explicitly know and analyze the analytical
structure of his/her T2 fuzzy PI (or PD) control system, the center-of-sets type of
reducer implemented by the modified interval weighted-average method plus the
average defuzzifier may be a better choice because:

1. The analytical structure of the fuzzy PI and PD controllers can be derived
through algebraic manipulations without requiring numerical calculation
assistance from a computer. In contrast, a computer program must be
made to aid the derivation process involving the interval weighted-average
center-of-sets type of reducer.

2. The IC divisions are analytically derived and hence the resulting boundaries
are precise. This, however, is not the case for the boundaries of the final ICs
in the previous section because they are found through numerical calcula-
tions, leading to approximate boundaries whose errors become smaller as
the number of points used in the calculations increases.

3. The IC divisions and analytical structure expressions can be determined in
a general setting (the parameters do not have values), which is not true for
the interval weighted-average center-of-sets type of reducer. For the latter
controllers, the analytical structure expressions and the associated computed
IC boundaries are valid only for the particular parameter values used in the
calculations. For a different set of parameter values, the program has to be
rerun to find ICs and the analytical structure.

Example 4.3 Find the variable proportional-gain Kp(e(k), r(k))of the fuzzy PI
controller using the average center-of-sets type of reducer for IC1 in Fig. 4.6b.

Variable Kp(e(k), r(k)) is the coefficient of the r(k). Therefore, one needs to first
add the 16 coefficients of r(k) in the numerators in Table 4.3. After algebraic sim-
plifications, one obtains the following:

Kp(e(k), r(k)) =
kΔukr(b1 − b2)L1

16L2

×
[

2

2L1 − kee (k)
+ 1

2L1(1 + 𝜃2) − kee(k)

+ 1

2L1(1 − 𝜃1) − kee(k)
+ 1

2L1(1 − 𝜃2) − kee(k)

+ 1

2L1(1 + 𝜃1) − kee(k)
+ 1

4L1(1 + 𝜃1 + 𝜃2) − 2kee(k)

+ 1

4L1(1 − 𝜃1 + 𝜃2) − 2kee(k)
+ 1

4L1(1 + 𝜃1 − 𝜃2) − 2kee(k)

+ 1

4L1

(
1 − 𝜃1 − 𝜃2

)
− 2kee(k)

]
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which is the explicit variable proportional-gain expression sought. The result is
consistent with Eq. (4.27) and Theorem 4.2.

Example 4.4 Find the variable proportional-gain Kp(e(k), r(k)) of the fuzzy PI
controller using the average center-of-sets type of reducer for IC1 to IC16 in
Fig. 4.6b when the parameter setting is L1 =L2 =L, 𝜃1 = 𝜃2 = 𝜃, b1 = b, b4 =− b,
and b2 = b3 = 0.

Do again what we did in Example 4.3, but this time for all the 16 ICs instead
of IC1 only. After simplifying the intermediate results, the final results are summa-
rized in Table 4.5, which shows the variable proportional gain for the entire input
space as opposed to just in one IC (e.g., Example 4.3). If you understand themethod
presented in this section and apply it correctly, you will have no problem arriving
at the same expressions as those in Table 4.5 after some effort is made. The table
provides a concrete case to illustrate Eq. (4.27) and Theorem 4.2.

4.6 MAMDANI FUZZY PI AND PD

CONTROLLERS—CONFIGURATION 33

4.6.1 Fuzzy PI Controller Configuration

We now explore the analytical structure of the fuzzy PI and PD controllers that have
the same configurations as in Section 4.5 (i.e., T2 triangular input fuzzy sets, Mam-
dani fuzzy rules, the centroid type of reducer implemented via the modified interval
weighted-average method, and the average defuzzifier) except they adopt T2 sin-
gleton fuzzy sets as output fuzzy sets as opposed to the T1 singleton fuzzy sets. The
output fuzzy sets B̃m are shown in Fig. 4.9 where 0≤ 𝛽m ≤ 𝛼m ≤ 1 (m= 1, 2, 3, 4).

The firing interval for each rule is

𝜇B̃1
(ΔU) = [𝜇

B̃1

, 𝜇B̃1
] = [min(𝜇

Ã11

, 𝜇
Ã21

, 𝛽1), min(𝜇Ã11
, 𝜇Ã21

, 𝛼1) ] (4.28)

𝜇B̃2
(ΔU) = [𝜇

B̃2

, 𝜇B̃2
] = [min(𝜇

Ã11

, 𝜇
Ã22

, 𝛽2), min(𝜇Ã11
, 𝜇Ã22

, 𝛼2) ] (4.29)

𝜇B̃3
(ΔU) = [𝜇

B̃3

, 𝜇B̃3
] = [min(𝜇

Ã12

, 𝜇
Ã21

, 𝛽3), min(𝜇Ã12
, 𝜇Ã21

, 𝛼3) ] (4.30)

𝜇B̃4
(ΔU) = [𝜇

B̃4

, 𝜇B̃4
] = [min(𝜇

Ã12

, 𝜇
Ã22

, 𝛽4), min(𝜇Ã12
, 𝜇Ã22

, 𝛼4) ] (4.31)

B4

ΔU(k)

B3

b1

B2 B1

b2b3b4

~~~~

α4 α3 α2

α1

β4 β3

β2

β1

Figure 4.9 Primary membership functions of the T2 singleton fuzzy sets for ΔU(k).

3Part of the material in this section is adapted from Du and Ying (2008; © 2008, IEEE).
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TABLE 4.5 Variable Proportional-gain Kp(e(k), r(k)) for Example 4.4

IC No. Kp(e(k), r(k))

1 and
3

kΔUkrb

32

[
4

2L (1 − 𝜃) − ke|e(k)| + 4

2L(1 + 𝜃) − ke|e(k)|
+ 1

2L (1 − 2𝜃) − ke|e(k)| + 1

2L(1 + 2𝜃) − ke|e(k)| + 6

2L − ke|e(k)|
]

2 and
4

kΔUkrb

32

[
4

2L (1 − 𝜃) − kr|r(k)| + 4

2L(1 + 𝜃) − kr|r(k)|
+ 1

2L (1 − 2𝜃) − kr|r(k)| + 1

2L(1 + 2𝜃) − kr|r(k)| + 6

2L − kr|r(k)|
]

5 and
9

kΔUkrb

32

[
2

3L + 2𝜃L − 2ke |e (k)| + kr|r(k)| + 4

2L − ke|e(k)| + kr|r(k)|
+ 2

L − 2𝜃L + kr|r(k)| + 4

3L + 2𝜃L − ke|e(k)|
+ 1

2L + 2𝜃L − ke |e (k)| + 1

L

]

6, 7, 10
and 11

kΔUkrb

32

[
2

2L + ke |e (k)| − kr|r(k)| + 2

4L + 4𝜃L − ke|e(k)| − kr|r(k)|
+ 2

5L + 6𝜃L − ke|e(k)| − 2kr|r(k)| + 4

3L + 2𝜃L − kr|r(k)|
+ 2

2L + 2𝜃L − kr |r (k)| + 2

3L + 2𝜃L + ke|e(k)| − 2kr|r(k)|
]

8 and
12

kΔUkrb

32

[
2

5L + 6𝜃L − 2ke |e (k)| − kr|r(k)| + 4

4L + 4𝜃L − ke|e(k)| − kr|r(k)|
+ 4

3L + 2𝜃L − ke|e(k)| + 1

2L + 2𝜃L − ke|e(k)|
+ 2

3L + 2𝜃L − kr |r (k)| + 1

L

]

13 and
15

kΔUkrb

32

[
4

3L − 2𝜃L − ke |e (k)| + 8

3L + 2𝜃L − ke|e(k)|
+ 2

2L + 2𝜃L − ke|e(k)| + 4

3L + 6𝜃L − ke|e(k)| + 1

2L + 4𝜃L − ke|e(k)|
+ 1

2L − ke |e (k)| + 1

L(1 + 2𝜃)
+ 1

L(1 − 2𝜃)
+ 2

L

]

14 and
16

kΔUkrb

32

[
2

3L − 2𝜃L − kr |r (k)| + 4

3L + 2𝜃L − kr|r(k)| + 2

2L + 2𝜃L − kr|r(k)|
+ 2

3L + 6𝜃L − kr |r (k)| + 1

2L + 4𝜃L − kr|r(k)| + 1

2L − kr|r(k)|
]

According to Eq. (4.16) and the centroid type of reducer, the result after type reduc-
tion and average defuzzification is

ΔUp(k) =

∑4

s=1
𝜇B̃s

bs∑4

s=1
𝜇B̃s

p = 1, ⋅ ⋅ ⋅, 16 (4.32)

where 𝜇B̃s
= 𝜇

B̃s

or 𝜇B̃s
and bs is the nonzero location of B̃s.
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Figure 4.10 ICs for the upper and lower bounds of the four firing intervals. Figures (a)–(h)
are corresponding to 𝜇B̃1

, 𝜇
B̃1

, 𝜇B̃2
, 𝜇

B̃2

, 𝜇B̃3
, 𝜇

B̃3

, 𝜇B̃4
, and 𝜇

B̃4

in Eqs. (4.29)–(4.32),

respectively.
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Figure 4.10 (Continued)

4.6.2 Method for Deriving the Analytical Structure

Similar to what was done with Eqs. (4.18)–(4.21) in Section 4.4 to divide the
input space into ICs, we need to use Eqs. (4.29)–(4.32) to divide the input space

into ICs. The results are shown in Fig. 4.10 where 𝜇−1

Ã11
, 𝜇−1

Ã11

, 𝜇−1

Ã12
, 𝜇−1

Ã12

, 𝜇−1

Ã21
,

𝜇−1

Ã21

, 𝜇−1

Ã22
, and 𝜇−1

Ã22

are the inverse functions of the linear part of the correspond-

ing membership functions. For instance, the result in Fig. 4.10a is a division for
𝜇B̃1

= min(𝜇Ã11
, 𝜇Ã21

, 𝛼1). When E(k) and R(k) are in the region labeled as 𝜇B̃1
IC1

in Fig. 4.10a, 𝜇Ã11
and 𝜇Ã21

are always larger than 𝛼1. So 𝜇B̃1
= 𝛼1. Similarly, in

the region labeled as 𝜇B̃1
IC2 the value of the membership function 𝜇Ã11

is always

smaller than those of 𝜇Ã21
and 𝛼1. Thus, 𝜇B̃1

= 𝜇Ã11
. And in the region of 𝜇B̃1

IC3,

the value of the membership function 𝜇Ã21
is always smaller than those of 𝜇Ã11

and

𝛼1, leading to 𝜇B̃1
= 𝜇Ã21

. In the common boundary of 𝜇B̃1
IC2 and 𝜇B̃1

IC3, the

value of 𝜇Ã11
is equal to that of 𝜇Ã21

, and both are smaller than 𝛼1.
Like before, these eight figures must be superimposed so that the four rules are

counted for at the same time. The number and shape of the final ICs after the super-
imposition depend on the shapes of the input fuzzy sets. Without loss of generality,
we assume L1 >L2, L1 × 𝜃1 = L2 × 𝜃2, 𝛼1 >𝛼2, 𝛼3 >𝛼4, 𝛽1 >𝛽2, and 𝛽3 >𝛽4

and show the superimposition result—in total 83 ICs (Fig. 4.11). For brevity,
the upper and lower limits of the four firing intervals for IC1–IC30 are listed in
Table 4.6.

For each IC, putting the eight membership functions of the IC into Eq. (4.33)
we obtain the analytical structure of the fuzzy PI controller for that IC. Like the
other T2 fuzzy controllers in Sections 4.4 and 4.5, for every IC, ΔUp(k) consists
of a series of fractions, each of which shares structure similar to Eq. (4.22). As an
example, Table 4.7 shows the analytical expressions of ΔUp(k) for IC1.
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TABLE 4.6 Upper and Lower Limits of Firing Intervals for Four Rules for
IC1–IC30

R1 R2 R3 R4

IC No. 𝜇B̃1
𝜇

B̃1

𝜇B̃3
𝜇

B̃3

𝜇B̃4
𝜇

B̃4

𝜇B̃2
𝜇

B̃2

1 𝜇Ã11
0 𝛼3 𝛽3 𝜇

Ã21

0 𝜇Ã11
0

2 𝜇Ã11
0 𝛼3 𝛽3 𝜇

Ã21

0 𝜇
Ã21

0

3 𝜇Ã11
𝜇

Ã11

𝛼3 𝛽3 𝜇
Ã21

0 𝜇
Ã21

0

4 𝜇Ã11
𝜇

Ã11

𝛼3 𝛽3 𝜇
Ã21

0 𝜇Ã11
0

5 𝜇Ã11
𝜇

Ã11

𝜇Ã12
𝛽3 𝜇

Ã21

0 𝜇
Ã21

0

6 𝜇Ã11
𝛽1 𝜇Ã12

𝛽3 𝜇
Ã21

0 𝜇
Ã21

0

7 𝜇Ã11
𝛽1 𝜇Ã12

𝜇
Ã12

𝜇
Ã21

0 𝜇
Ã21

0

8 𝛼1 𝛽1 𝜇Ã12
𝜇

Ã12

𝜇
Ã21

0 𝜇
Ã21

0

9 𝛼1 𝛽1 𝜇Ã12
𝜇

Ã12

𝜇Ã12
0 𝜇

Ã21

0

10 𝛼1 𝛽1 𝜇Ã12
0 𝜇

Ã21

0 𝜇
Ã21

0

11 𝛼1 𝛽1 𝜇Ã12
0 𝜇Ã12

0 𝜇
Ã21

0

12 𝜇Ã11
0 𝛼3 𝛽3 𝜇

Ã21

𝜇
Ã22

𝜇Ã11
0

13 𝜇Ã11
0 𝜇Ã21

𝛽3 𝜇
Ã21

𝜇
Ã22

𝜇Ã11
0

14 𝜇Ã11
𝜇

Ã11

𝛼3 𝛽3 𝜇
Ã21

𝜇
Ã22

𝜇Ã11
𝜇

Ã11

15 𝜇Ã11
𝜇

Ã11

𝜇Ã21
𝛽3 𝜇

Ã21

𝜇
Ã22

𝜇Ã11
𝜇

Ã11

16 𝜇Ã11
𝜇

Ã11

𝛼3 𝛽3 𝜇
Ã21

𝜇
Ã22

𝜇Ã11
𝜇

Ã22

17 𝜇Ã11
𝜇

Ã11

𝜇Ã12
𝛽3 𝜇

Ã21

𝜇
Ã22

𝜇Ã11
𝜇

Ã22

18 𝜇Ã11
𝜇

Ã11

𝜇Ã12
𝛽3 𝜇

Ã21

𝜇
Ã22

𝜇
Ã21

𝜇
Ã22

19 𝜇Ã11
𝛽1 𝜇Ã12

𝛽3 𝜇
Ã21

𝜇
Ã22

𝜇
Ã21

𝜇
Ã22

20 𝜇Ã11
𝛽1 𝜇Ã12

𝜇
Ã12

𝜇
Ã21

𝜇
Ã22

𝜇
Ã21

𝜇
Ã22

21 𝜇Ã11
𝛽1 𝜇Ã12

𝜇
Ã12

𝜇Ã12
𝜇

Ã22

𝜇
Ã21

𝜇
Ã22

22 𝜇Ã21
𝛽1 𝜇Ã12

𝜇
Ã12

𝜇Ã12
𝜇

Ã12

𝜇
Ã21

𝜇
Ã22

23 𝛼1 𝛽1 𝜇Ã12
𝜇

Ã12

𝜇Ã12
𝜇

Ã22

𝜇
Ã21

𝜇
Ã22

24 𝛼1 𝛽1 𝜇Ã12
𝜇

Ã12

𝜇Ã12
𝜇

Ã12

𝜇
Ã21

𝜇
Ã22

25 𝛼1 𝛽1 𝜇Ã12
0 𝜇Ã12

0 𝜇
Ã21

𝜇
Ã22

26 𝜇Ã21
𝛽1 𝜇Ã12

0 𝜇Ã12
0 𝜇

Ã21

𝜇
Ã22

27 𝜇Ã11
0 𝜇Ã21

𝛽3 𝜇
Ã21

𝛽4 𝜇Ã11
0

28 𝜇Ã11
𝜇

Ã11

𝜇Ã21
𝛽3 𝜇

Ã21

𝛽4 𝜇Ã11
𝜇

Ã11

29 𝜇Ã11
𝜇

Ã11

𝜇Ã12
𝛽3 𝜇

Ã21

𝛽4 𝜇Ã11
𝜇

Ã22

30 𝜇Ã11
𝜇

Ã11

𝜇Ã12
𝛽3 𝜇

Ã21

𝛽4 𝜇Ã11
𝛽2
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TABLE 4.7 𝚫Up(k) for IC1

p ΔUp(k)

1
L2

(
b1 + b2

)
E (k) − L1b4R (k) + 2L1L2

[(
𝜃1 + 0.5

) (
b1 + b2

)
+ 𝛼3b3 +

(
𝜃2 + 0.5

)
b4

]
2L2E (k) − L1R (k) + 2L1L2

(
2𝜃1 + 𝜃2 + 𝛼3 + 1.5

)
2

(
b1 + b2

)
E (k) + 2L1

[(
𝜃1 + 0.5

) (
b1 + b2

)
+ 𝛼3b3

]
2E (k) + 2L1

(
2𝜃1 + 𝛼3 + 1

)
3

L2

(
b1 + b2

)
E (k) − L1b4R (k) + 2L1L2

[(
𝜃1 + 0.5

) (
b1 + b2

)
+ 𝛽3b3 +

(
𝜃2 + 0.5

)
b4

]
2L2E (k) − L1R (k) + 2L1L2

(
2𝜃1 + 𝜃2 + 𝛽3 + 1.5

)
4

(
b1 + b2

)
E (k) + 2L1

[(
𝜃1 + 0.5

) (
b1 + b2

)
+ 𝛽3b3

]
2E (k) + 2L1

(
2𝜃1 + 𝛽3 + 1

)
5

L2b1E (k) − L1b4R (k) + 2L1L2

[(
𝜃1 + 0.5

)
b1 + 𝛼3b3 +

(
𝜃2 + 0.5

)
b4

]
L2E (k) − L1R (k) + 2L1L2

(
𝜃1 + 𝜃2 + 𝛼3 + 1

)
6

b1E (k) + 2L1

[(
𝜃1 + 0.5

)
b1 + 𝛼3b3

]
E (k) + 2L1

(
𝜃1 + 𝛼3 + 0.5

)
7

L2b1E (k) − L1b4R (k) + 2L1L2

[(
𝜃1 + 0.5

)
b1 + 𝛽3b3 +

(
𝜃2 + 0.5

)
b4

]
L2E (k) − L1R (k) + 2L1L2

(
𝜃1 + 𝜃2 + 𝛽3 + 1

)
8

b1E (k) + 2L1

[(
𝜃1 + 0.5

)
b1 + 𝛽3b3

]
E (k) + 2L1

(
𝜃1 + 𝛽3 + 0.5

)
9

L2b2E (k) − L1b4R (k) + 2L1L2

[(
𝜃1 + 0.5

)
b2 + 𝛼3b3 +

(
𝜃2 + 0.5

)
b4

]
L2E (k) − L1R (k) + 2L1L2

(
𝜃1 + 𝜃2 + 𝛼3 + 1

)
10

b2E (k) + 2L1

[(
𝜃1 + 0.5

)
b2 + 𝛼3b3

]
E (k) + 2L1

(
𝜃1 + 𝛼3 + 0.5

)
11

L2b2E (k) − L1b4R (k) + 2L1L2

[(
𝜃1 + 0.5

)
b2 + 𝛽3b3 +

(
𝜃2 + 0.5

)
b4

]
L2E (k) − L1R (k) + 2L1L2

(
𝜃1 + 𝜃2 + 𝛽3 + 1

)
(continued)
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TABLE 4.7 (Continued)

p ΔUp(k)

12
b2E (k) + 2L1

[(
𝜃1 + 0.5

)
b2 + 𝛽3b3

]
E (k) + 2L1

(
𝜃1 + 𝛽3 + 0.5

)
13

b4R (k) − 2L2

[
𝛼3b3 +

(
𝜃2 + 0.5

)
b4

]
R (k) − 2L2

(
𝛼3 + 𝜃2 + 0.5

)
14 b3

15
b4R (k) − 2L2

[
𝛽3b3 +

(
𝜃2 + 0.5

)
b4

]
R (k) − 2L2

(
𝛽3 + 𝜃2 + 0.5

)
16 b3

Without proof, the formal result similar to Theorems 4.1 and 4.2 is given below:

THEOREM 4.3 The T2 fuzzy PI (or the corresponding PD) controller in this
section is structurally equivalent to a nonlinear PI (or PD) controller with variable
gains and a variable control offset.
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−1

μA22
(β4)~

−1

μA21
(β3)~

−1

μA11
(β2)~

−1 μA12
(β4)~
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Figure 4.11 Overall input space division. Each region is labeled by an IC number.
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4.7 MAMDANI FUZZY PI AND PD

CONTROLLERS—CONFIGURATION 44

4.7.1 Fuzzy PI Controller Configuration

The fuzzy controllers in this section are quite different from, and more complex
than, those in Sections 4.4–4.6 as far as their configuration is concerned. More
specifically, the configuration is extended to the following: Any kind and num-
ber of T2 fuzzy sets for the inputs, any type of T2 or T1 fuzzy sets for the out-
put, Mamdani fuzzy rules, the center-of-sets type of reducer involving the interval
weighted-average method and iterative KM algorithm, and the centroid defuzzifier.
The complexity is mainly due to (1) nonlinear input fuzzy sets and (2) the iterative
nature of the KM algorithm.

Let E(k) be defined on [L1,R1] that is divided into N1 − 1 subintervals:
[S1, S2],… , [Si, Si+ 1],… , [SN1−1, SN1

], 1≤ i≤N1. There are N1 interval T2

fuzzy sets, Ã11, · · · , Ã1i, · · · , Ã1N1
. And Ã1i is defined over [Si− 1, Si+ 1] and its

membership value is zero everywhere else. Assume that (1) 𝜇Ã1i
≥ 𝜇

Ã1i

and (2)

𝜇Ã1i
(and 𝜇

Ã1i

) increases from 0, reaches its maximum, which can be a range of the

same maximum, and then decreases to 0. Many of the widely used T2 fuzzy sets
in the literature (e.g., the trapezoidal type) meet the assumptions. To illustrate the
assumptions, Fig. 4.12 provides some example T2 fuzzy sets.

Likewise, let R(k) be defined on [L2,R2] that is divided into N2 − 1 subinter-
vals, namely [M1,M2],… , [Mj,Mj+ 1],… , [MN2−1,MN 2

], over which N2 interval
T2 fuzzy sets meeting the same assumptions above are defined. Each of them is
denoted Ã2j (1 ≤ j ≤ N2) .

A total of N1 ×N2 Mamdani fuzzy rules are used to cover all the possible com-
binations of the input fuzzy sets. Because of the way that the input fuzzy sets are
defined, at any sampling instance, only two adjacent Ã1i and two adjacent Ã2j can

Si−1 Si+1 Si+2 SN1

SiS1

E(k)

...

A1i−1
A1i A1i+1 A1i+2

...

1

0

0.5

Primary membership

Figure 4.12 Example interval T2 fuzzy sets for E(k).

4Part of the material in this section is adapted from Zhou and Ying (2011; © 2011, IEEE) and Zhou

and Ying (2013; © 2013, IEEE).
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be involved in fuzzifying E(k) and R(k), respectively. Without losing generality, we
assume that Ã1i, Ã1i+1, Ã2j, and Ã2j+1 are the ones that are involved. Accordingly,
the following four fuzzy rules are executed:

R1∶ If E(k) is Ã1i and R(k) is Ã2j, then ΔU(k) is B̃h(i,j).

R2∶ If E(k) is Ã1i and R(k) is Ã2j+1, then ΔU(k) is B̃h(i,j+1).

R3∶ If E(k) is Ã1i+1 and R(k) is Ã2j, then ΔU(k) is B̃h(i+1,j).

R4∶ If E(k) is Ã1i+1 and R(k) is Ã2j+1, then ΔU(k) is B̃h(i+1,j+1)

where the Zadeh fuzzy AND operator is used, and B̃h(i,j), B̃h(i,j+1), B̃h(i+1,j), and

B̃h(i+1,j+1) can be any continuous interval T2 fuzzy sets. These output fuzzy sets
are indexed by integer subscripts whose values are computed using function h(⋅) so
that the input and output fuzzy sets are mathematically linked. For example, one
may simply use

h(i, j) = i + j

which, in a sense, links the input fuzzy sets with the output fuzzy set in a linear
fashion, leading to the so-called linear fuzzy rules (Ying, 1993b). In this case, sup-
pose that Ã12(i.e., i = 2) means E(k) is “negative medium” and that Ã25 (i.e., j = 5)

indicates R(k) is “positive small.” Then, B̃h(i,j) = B̃7 can be interpreted as the output
being “positive large.” Because h(⋅), chosen by the controller designer, can be any
function, the fuzzy rules subsequently can be arbitrary in terms of input and output
relation.

The firing intervals for the four rules are

F̃1 = [f 1, f
1
] = [min(𝜇

Ã1i

, 𝜇
Ã2j

), min(𝜇Ã1i
, 𝜇Ã2j

) ] (4.33)

F̃2 = [f 2, f
2
] = [min(𝜇

Ã1i

, 𝜇
Ã2j+1

), min(𝜇Ã1i
, 𝜇Ã2j+1

) ] (4.34)

F̃3 = [f 3, f
3
] = [min(𝜇

Ã1i+1

, 𝜇
Ã2j

), min(𝜇Ã1i+1
, 𝜇Ã2j

) ] (4.35)

F̃4 = [f 4, f
4
] = [min(𝜇

Ã1i+1

, 𝜇
Ã2j+1

), min(𝜇Ã1i+1
, 𝜇Ã2j+1

) ] (4.36)

The iterative KM algorithm links the firing intervals and the centroids for B̃h(i,j),

B̃h(i,j+1), B̃h(i+1,j), and B̃h(i+1,j+1) to produce ΔU(k)= [ΔUl(k),ΔUr(k)], a T1 fuzzy
set, which is then defuzzified by the centroid defuzzifier Eq. (3.68) to produce
ΔU(k). The centroid for the output fuzzy set of Rs is denoted [as, bs], which can be
computed either online or offline (note that as = bs when the output fuzzy set is T1).
Then bs and asare, respectively, arranged in the ascending orders and the results
are represented by b1 * ≤ b2 * ≤ b3 * ≤ b4 * and a1 * ≤ a2 * ≤ a3 * ≤ a4 *. Then relabel

f
s

and f s so that they conform to b1 * ≤ b2 * ≤ b3 * ≤ b4 * and a1 * ≤ a2 * ≤ a3 * ≤ a4 *,
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respectively, resulting in f
1∗
, f

2∗
, f

3∗
, f

4∗
and f 1∗, f 2∗, f 3∗, f 4∗. According to

Eq (3.63),

ΔUl(k) =

∑L

i=1
f

i∗
ai +

∑4

j=L+1
f j∗aj∑L

i=1
f

i∗
+

∑4

j=L+1
f j∗

(4.37)

ΔUr(k) =

∑R

i=1
f i∗bi +

∑4

j=R+1
f

j∗
bj∑R

i=1
f i∗ +

∑4

j=R+1
f

j∗ (4.38)

where integers L (1≤ L≤ 3) and R (1≤R≤ 3) are switch points that depend on the
input and output fuzzy sets and the values of E(k) and R(k), and hence vary with k.
Finally

ΔU(k) = 1∕2(ΔUl(k) + ΔUr(k)) (4.39)

4.7.2 Method for Deriving the Analytical Structure

Suppose arbitrarily that Ã1i, Ã1i+1, Ã2j, and Ã2j+1 are as shown in Fig. 4.13 with
the mathematical definitions given in Table 4.8 (outside the intervals in the right
column of Table 4.8, the membership values are 0).

The process of developing the ICs is the same as in the previous sections
of this chapter (i.e., the process of generating Figs. 4.10 and 4.11). Without
loss of generality, let 𝜂j+ 1 ≤ 𝜆i+ 1 ≤ 𝜂j ≤ 𝜆i. Figure 4.14 shows the ICs where

𝜇−1

Ã1i

(⋅), 𝜇−1

Ã2j

(⋅), 𝜇−1

Ã2j

(⋅), 𝜇−1

Ã2j+1

(⋅), 𝜇−1

Ã2j+1
(⋅), and 𝜇−1

Ã1i+1

(⋅) are the inverse functions

of the respective membership functions. It turns out that there are a total

of 50 regions, labeled IC1–IC50. For each IC, [f s, f
s
] can be determined.

For example, for IC27, Eqs. (4.33)–(4.36) generate: f 1 = min(𝜇
Ã1i

, 𝜇
Ã2j

) =

𝜇
Ã2j

, f 2 = min(𝜇
Ã1i

, 𝜇
Ã2j+1

) = 𝜇
Ã1i

, f 3 = min(𝜇
Ã1i+1

, 𝜇
Ã2j

) = 𝜇
Ã2j

, f 4 = min(𝜇
Ã1i+1

,

𝜇
Ã2j+1

) = 𝜇
Ã2j+1

, f
1
= min(𝜇Ã1i

, 𝜇Ã2j
) = 𝜇Ã2j

, f
2
= min(𝜇Ã1i

, 𝜇Ã2j+1
) = 𝜇Ã1i

, f
3
= min

(𝜇Ã1i+1
, 𝜇Ã2j

) = 𝜇Ã2j
, and f

4
= min(𝜇Ã1i+1

, 𝜇Ã2j+1
) = 𝜇Ã2j+1

. Note that the result can

be different if the input fuzzy sets are different.
For the type reduction procedure, assume bs * = bs and as * = as, and accordingly

f
s∗
= f

s
and f s∗ = f s. For an IC put the eight membership functions resulting from

the min( ) operations in the four rules and the centroids of the output fuzzy sets into
the type reducer represented by Eqs. (4.37) and (4.38). One will obtain ΔUR(k)
and ΔUL(k), which will lead to the analytical structure of the fuzzy controller via
Eq. (4.39) for that particular IC if L in Eq. (4.37) and R in Eq. (4.38) are known.
The exact values of L and R can always be computed as long as all the parameters
of the input fuzzy sets, controller inputs, and the centroids of all the output fuzzy
sets are numerically available. Hence, in principle for any specific fuzzy controller,
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Si Si+1

λi

ηj

λi+1

1

0

Primary membership

(a)

R(k)

E(k)

Primary membership

1

0

(b)

μA1i
~

μA2j
~

μA2j
~

μA1i
~

μA1i+1
~

μA1i+1
~

μA2j+1
~

μA2j+1
~

A1i
∼

A2j
∼

Mj Mj+1νj+1 νjνj+1 + ϕj+1 νj − ϕj

A1i+1
∼

ηj+1A2j+1
∼

Figure 4.13 Example interval T2 fuzzy sets used for (a) E(k) and (b) R(k).

the structure can always be derived. Nevertheless, our interest is on a general con-
troller configuration where these parameters are not assigned values. As a result, L
and R do not have specific values, making the analytical structure derivation sig-
nificantly more complicated. Note that L= 1∼ 3 and R= 1∼ 3 for the controller in
this section. They lead to a total of 3× 3 = 9 possible scenarios, each of which is
called a case. Nine cases are the maximum number of cases that Eqs. (4.37) and
(4.38) can produce for an IC. When L= 1 and R= 1, it is case 1, for which the
corresponding structure of the T2 fuzzy controller is

ΔU(k) = 1

2

⎛⎜⎜⎝
f

1
a1 + f 2a2 + f 3a3 + f 4a4

f
1
+ f 2 + f 3 + f 4

+
f 1b1 + f

2
b2 + f

3
b3 + f

4
b4

f 1 + f
2
+ f

3
+ f

4

⎞⎟⎟⎠ (4.40)
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TABLE 4.8 Mathematical Definitions of Ã1i, Ã1i+1, Ã2j, and Ã2j+1

Mathematical Definition Interval

𝜇Ã1i
= exp

{
−

[
E (k) − Si

]2

a2
i

}
[Si, Si+ 1]

𝜇
Ã1i

= 𝜆i exp

{
−

[
E (k) − Si

]2

𝜎2
i

}
[Si, Si+ 1]

𝜇Ã1i+1
= exp

{
−

[
E (k) − Si+1

]2

a2
i+1

}
[Si, Si+ 1]

𝜇
Ã1i+1

= 𝜆i+1 exp

{
−

[
E (k) − Si+1

]2

𝜎2
i+1

}
[Si, Si+ 1]

𝜇Ã2j
= − R(k)

𝜈j − Mj

+
Mj

𝜈j − Mj

+ 1 [Mj, 𝜈j]

𝜇
Ã2j

= −
𝜂j

𝜈j − 𝜙j − Mj

R(k) +
Mj𝜂j

𝜈j − 𝜙j − Mj

+ 𝜂j [Mj, 𝜈j −𝜙j]

𝜇Ã2j+1
= 1

Mj+1 − 𝜈j+1

R(k) −
Mj+1

Mj+1 − 𝜈j+1

+ 1 [𝜈j+ 1,Mj+ 1]

𝜇
Ã2j+1

=
𝜂j+1

Mj+1 − 𝜈j+1 − 𝜙j+1

R(k)

[𝜈j+ 1 +𝜙j+ 1,Mj+ 1]

−
Mj+1𝜂j+1

Mj+1 − 𝜈j+1 − 𝜙j+1

+ 𝜂j+1

1 2 3 4

17
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μA2j+1
(μA1i

(Si+1))~ ~−1μA2j+1
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Figure 4.14 Input space is divided into 50 ICs.
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The other eight cases can also be established by the type reducer (Table 4.9).
Because of the lack of the specific parameter values, the analytical structure of

the fuzzy controller cannot be uniquely determined partially due to the multiple
(i.e., nine) cases stemming from the unknown values of L and R. We now concen-
trate on a particular fuzzy controller with all the parameter values specified so that
its analytical structure can be explicitly derived.

Example 4.5 Let us use IC27 just mentioned above and IC20 as examples.
For any point in this IC, one can derive nine different analytical structures for

the nine cases. For instance, the analytical structure for case 1 is

ΔU(k) = b2

Ω2

exp

{
−
[

E (k) − Si

ai

]2
}

+
(
Γ1

Ω1

+
Γ2

Ω2

)
R(k) +

( Γ3

Ω1

+
Γ4

Ω2

)
(4.41)

where

Ω1 = 2

(
1 + 𝜂j + 2𝜂j+1 −

Mj

Mj − 𝜈j
−

𝜂jMj

Mj + 𝜙j − 𝜈j
−

2𝜂j+1Mj+1

Mj+1 − 𝜈j+1 − 𝜙j+1

)

+ 2

(
1

Mj − 𝜈j
+

𝜂j

Mj + 𝜙j − 𝜈j
+

2𝜂j+1

Mj+1 − 𝜈j+1 − 𝜙j+1

)
R(k)

Ω2 = 2

(
2 + 𝜂j −

Mj

Mj − 𝜈j
−

𝜂jMj

Mj + 𝜙j − 𝜈j
−

Mj+1

Mj+1 − 𝜈j+1

)

+ 2

(
1

Mj+1 − 𝜈j+1

+ 1

Mj − 𝜈j
+

𝜂j

Mj + 𝜙j − 𝜈j

)
R(k)

+ 2 exp

{
−
[

E (k) − Si

ai

]2
}

Γ1 = a1

Mj − 𝜈j
+

a3𝜂j

Mj + 𝜙j − 𝜈j
+

(a2 + a4)𝜂j+1

Mj+1 − 𝜈j+1 − 𝜙j+1

Γ2 =
b1𝜂j

Mj + 𝜙j − 𝜈j
+ b3

Mj − 𝜈j
+ b4

Mj+1 − 𝜈j+1
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TABLE 4.9 Structure of T2 Fuzzy Controller for Each of Nine Cases

Case
No.

Switching
Points ΔU(k)

1 L= 1, R= 1
1

2

⎛⎜⎜⎝
f

1
a1 + f 2a2 + f 3a3 + f 4a4

f
1
+ f 2 + f 3 + f 4

+
f 1b1 + f

2
b2 + f

3
b3 + f

4
b4

f 1 + f
2
+ f

3
+ f

4

⎞⎟⎟⎠
2 L= 1, R= 2

1

2

⎛⎜⎜⎝
f

1
a1 + f 2a2 + f 3a3 + f 4a4

f
1
+ f 2 + f 3 + f 4

+
f 1b1 + f 2b2 + f

3
b3 + f

4
b4

f 1 + f 2 + f
3
+ f

4

⎞⎟⎟⎠
3 L= 1, R= 3

1

2

⎛⎜⎜⎝
f

1
a1 + f 2a2 + f 3a3 + f 4a4

f
1
+ f 2 + f 3 + f 4

+
f 1b1 + f 2b2 + f 3b3 + f

4
b4

f 1 + f 2 + f 3 + f
4

⎞⎟⎟⎠
4 L= 2, R= 1

1

2

⎛⎜⎜⎝
f

1
a1 + f

2
a2 + f 3a3 + f 4a4

f
1
+ f

2
+ f 3 + f 4

+
f 1b1 + f

2
b2 + f

3
b3 + f

4
b4

f 1 + f
2
+ f

3
+ f

4

⎞⎟⎟⎠
5 L= 2, R = 2

1

2

⎛⎜⎜⎝
f

1
a1 + f

2
a2 + f 3a3 + f 4a4

f
1
+ f

2
+ f 3 + f 4

+
f 1b1 + f 2b2 + f

3
b3 + f

4
b4

f 1 + f 2 + f
3
+ f

4

⎞⎟⎟⎠
6 L= 2, R= 3

1

2

⎛⎜⎜⎝
f

1
a1 + f

2
a2 + f 3a3 + f 4a4

f
1
+ f

2
+ f 3 + f 4

+
f 1b1 + f 2b2 + f 3b3 + f

4
b4

f 1 + f 2 + f 3 + f
4

⎞⎟⎟⎠
7 L= 3, R= 1

1

2

⎛⎜⎜⎝
f

1
a1 + f

2
a2 + f

3
a3 + f 4a4

f
1
+ f

2
+ f

3
+ f 4

+
f 1b1 + f

2
b2 + f

3
b3 + f

4
b4

f 1 + f
2
+ f

3
+ f

4

⎞⎟⎟⎠
8 L= 3, R = 2

1

2

⎛⎜⎜⎝
f

1
a1 + f

2
a2 + f

3
a3 + f 4a4

f
1
+ f

2
+ f

3
+ f 4

+
f 1b1 + f 2b2 + f

3
b3 + f

4
b4

f 1 + f 2 + f
3
+ f

4

⎞⎟⎟⎠
9 L= 3, R= 3

1

2

⎛⎜⎜⎝
f

1
a1 + f

2
a2 + f

3
a3 + f 4a4

f
1
+ f

2
+ f

3
+ f 4

+
f 1b1 + f 2b2 + f 3b3 + f

4
b4

f 1 + f 2 + f 3 + f
4

⎞⎟⎟⎠
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Γ3 = a1 + a3𝜂j + (a2 + a4)𝜂j+1 −
a1Mj

Mj − 𝜈j
−

a3𝜂jMj

Mj + 𝜙j − 𝜈j
−

(a2 + a4)𝜂j+1Mj+1

Mj+1 − 𝜈j+1 − 𝜙j+1

Γ4 = b1𝜂j + b3 + b4 −
b1𝜂jMj

Mj + 𝜙j − 𝜈j
+

b3Mj

𝜈j − Mj
+

b4Mj+1

𝜈j+1 − Mj+1

As another instance, the analytical structure for case 2 for IC20 is

ΔU(k) = 1

Ω2

(
b2𝜆i exp

{
−
[

E (k) − Si

𝜎i

]2
}

+ b4 exp

{
−
[

E (k) − Si+1

ai+1

]2
})

+
(
Γ1

Ω1

+
Γ2

Ω2

)
R(k) +

( Γ3

Ω1

+
Γ4

Ω2

)
(4.42)

where

Ω1 = 2

(
1 + 𝜂j + 2𝜂j+1 −

Mj

Mj − 𝜈j
−

𝜂jMj

Mj + 𝜙j − 𝜈j
−

2𝜂j+1Mj+1

Mj+1 − 𝜈j+1 − 𝜙j+1

)
+ 2

(
1

Mj − 𝜈j
+

𝜂j

Mj + 𝜙j − 𝜈j
+

2𝜂j+1

Mj+1 − 𝜈j+1 − 𝜙j+1

)
R(k)

Ω2 = 2

(
1 + 𝜂j −

Mj

Mj − 𝜈j
−

𝜂jMj

Mj + 𝜙j − 𝜈j

)
+ 2

(
1

Mj − 𝜈j
+

𝜂j

Mj + 𝜙j − 𝜈j

)
R(k)

+ 2𝜆i exp

{
−
[

E (k) − Si

𝜃i

]2
}

+ exp

{
−
[

E (k) − Si+1

ai+1

]2
}

Γ1 = a1

Mj − 𝜈j
+

a3𝜂j

Mj + 𝜙j − 𝜈j
+

(a2 + a4)𝜂j+1

Mj+1 − 𝜈j+1 − 𝜙j+1

Γ2 =
b1𝜂j

Mj + 𝜙j − 𝜈j
+ b3

Mj − 𝜈j

Γ3 = a1 + a3𝜂j + (a2 + a4)𝜂j+1 −
a1Mj

Mj − 𝜈j
−

a3𝜂jMj

Mj + 𝜙j − 𝜈j
−

(a2 + a4)𝜂j+1Mj+1

Mj+1 − 𝜈j+1 − 𝜙j+1

Γ4 = b1𝜂j + b3 + b4 −
b1𝜂jMj

Mj + 𝜙j − 𝜈j
−

b3Mj

Mj − 𝜈j

The analytical structures in Eqs. (4.41) and (4.42) are fundamentally different
from those in Sections 4.4–4.6 because of exp(−{[E(k)− Si]/ai}

2) in Eq. (4.41)
and exp(−{[E(k)− Si]/𝜎i}

2) and exp(−{[E(k)− Si+ 1]/ai+ 1}2) in Eq. (4.42), which
make the structures non-PI control type.The reasons behind the appearance of these
two terms are the use of the nonlinear input fuzzy sets Ã1i and Ã1i+1 (see Fig. 4.13a).
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Clearly, the type of input fuzzy set can dictate the form of the analytical struc-
ture. As a result, a theorem similar to Theorems 4.1–4.3 cannot be established for
the controllers in the present section. Nevertheless, if all the input fuzzy sets are
restricted to piecewise linear fuzzy sets (e.g., triangular and/or trapezoidal), the
following can be proved to be true.

THEOREM 4.4 The T2 fuzzy PI (or the corresponding PD) controller in this
section is structurally equivalent to a nonlinear PI (or PD) controller with variable
gains and a variable control offset if and only if all the input fuzzy sets are piecewise
linear.

Example 4.6 below is a concrete (albeit indirect) illustration of the validity of
this theorem. We wish to point out first that the IC distribution in the input space is
determined by the controller parameters only,whereas the case distribution depends
on both the controller parameters and the input values. Hence, the two distributions
are not necessarily related (we have yet to find their possible connection—a future
research topic). When the controller parameters are unknown (e.g., for a general
configuration), it may be impossible to determine the boundaries between adjacent
cases. If, on the other hand, the controller parameters are given, the boundaries can
be easily determined quantitatively by a computer program written for this purpose.

A MATLAB program was developed to find: (1) an IC such that every point in
it belonged to the same case, (2) an IC such that points in it belonged to more than
one case, and (3) multiple ICs such that points in them belonged to the same case
(the program is available for the reader to download). Any point is assigned to one
and only one case. Which case is assigned to a point will be known if the controller
parameters and the values of the input variables are specified. But when they are
not specified, that is, when the controller configuration is general, the multiple pos-
sibilities arise. The reader is also reminded that two ICs having the same case may
not have the same analytical structure. For the 50 ICs shown in Fig. 4.14, in theory
there exist a total of maximum 9× 50 = 450 (i.e., each IC is supposed to have
all 9 cases) and minimum 1× 50 = 50 (when each IC has only 1 case) possible
analytical structures. The exact number of different analytical structures cannot be
known because of the general configuration. A Mathematica program was written
to derive all of the 450 analytical structures (not shown here) and found them all to
be similar to either Eq. (4.41) or (4.42).

In summary, the total number of analytical structures is unknown unless all the
controller parameters are given. Even when all the parameter values are spelled out,
a computer program will most likely need to be written by the reader to determine
which case is assigned to which point in the input space. Once this is carried out,
the total number of cases will readily be known.

Example 4.6 Suppose that the universe of E(k) of a controller meeting the con-
figuration of this section is [−9, 9] and is divided into three subintervals, [−9,− 3],
[−3, 3] and [3, 9], over which four intervalT2 fuzzy sets, Ã11, Ã12, Ã13, and Ã14, exist
(Zhou and Ying, 2013). Likewise, R(k) is in [−6, 6] and is divided into three subin-
tervals, [−6,− 2], [−2, 2], and [2, 6]. Four interval T2 fuzzy sets, Ã21, Ã22, Ã23, and
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Figure 4.15 Example triangular interval T2 fuzzy sets for (a) E(k) and (b) R(k).

Ã24, are employed. These fuzzy sets are symmetrically triangular (Fig. 4.15). In the
fuzzy rules, the input fuzzy sets and output fuzzy sets are linked by h(i, j)= 2i+ j.
Derive the analytical structure of this fuzzy controller.

For brevity, we only derive the analytical structure for − 3≤E(k)≤ 3 and
− 2≤R(k)≤ 2, and the structure for other subintervals can be obtained in a
similar fashion. Because − 3≤E(k)≤ 3, Ã12 and Ã13 are used, and owing to

− 2≤R(k)≤ 2, Ã22 and Ã23 are involved (accordingly i= 2, 3 and j= 2, 3). Four
fuzzy rules involving these four fuzzy sets are executed. The mathematical
definitions for nonzero values of Ã12, Ã13, Ã22, and Ã23 needed in the derivation are
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TABLE 4.10 Mathematical
Definitions for Parts of Ã12, Ã13, Ã22,
and Ã23

Definition Interval

𝜇Ã12
= (−E(k) + 3)∕6 E(k)∈ [−3, 3]

𝜇
Ã12

= (−E(k) + 2)∕6 E(k)∈ [−3, 2]

𝜇Ã13
= (E(k) + 3)∕6 E(k)∈ [−3, 3]

𝜇
Ã13

= (E(k) + 2)∕6 E(k)∈ [−2, 3]

𝜇Ã22
= (−R(k) + 2)∕4 R(k)∈ [−2, 2]

𝜇
Ã22

= (−R(k) + 1)∕4 R(k)∈ [−2, 1]

𝜇Ã23
= (R(k) + 2)∕4 R(k)∈ [−2, 2]

𝜇
Ã23

= (R(k) + 1)∕4 R(k)∈ [−1, 2]

listed in Table 4.10. The resulting output fuzzy sets are B̃h(2,2) = B̃6, B̃h(2,3) = B̃7,

B̃h(3,2) = B̃8, and B̃h(3,3) = B̃9 [the subscripts are calculated by h(i, j)= 2i+ j]. They
can be of any shape. Whatever the shapes, their centroids are computable before
the structure derivation. Suppose the centroids for the four output fuzzy sets are
[4.8, 5.2], [5.3, 5.7], [5.8, 6.1], and [6.4, 6.6], respectively.

The input space covered by [−3, 3]× [−2, 2] must be divided into IC1–IC40
shown in Fig. 4.16. Because the primary membership functions of all the input
fuzzy sets are symmetrical and piecewise linear (i.e., triangular), the 40 ICs
subsequently show some symmetricities. Now that the controller configuration
is specified, values of L and R can be determined. The procedure is as follows.
Choose 301 points for E(k): − 3,− 2.98,… , 2.98, 3 and 201 points for R(k):
− 2,− 1.98,… , 1.98, 2. Each combination of an E(k) value and a R(k) value has
a case number. Figure 4.17 shows how the computer-calculated cases distribute
over the 60,501 (301× 201) points. It happens in this example that only cases 1, 2,
5, 6, and 9 show up in Fig. 4.17, and the other four of the nine cases never appear.
Note that more points used leads to smoother case boundaries.

Superimposing Fig. 4.16 onto Fig. 4.17 produces Fig. 4.18, showing ICs and
cases at the same time. As already pointed out above, one IC can have several
different cases. For example, in IC35 cases 1, 2, 5, and 6 exist. Also, the locations
of the ICs and the case distributions have no known relation. The location of an IC
depends on the eight individual input space divisions owing to the min( ) operation,
which, in turn, depend on the input fuzzy sets. A case (i.e., the values of L and R)
is decided not only by all the input fuzzy sets but also by all the output fuzzy sets
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Figure 4.17 Case distribution in the region shown in Fig. 4.16.



TSK FUZZY PI AND PD CONTROLLERS—CONFIG.5 181

1

1

2

3

4

17

16

18

14
15

1312

11

10

9

75

6

19

20

21

23

25

28

26

24

22
29

34

27

37

35

32

36

39

30

33

31

8

32
−2

2

−2

38

40

−3

−1

−2.5 2.5E(k)

R(k)

Figure 4.18 Result of superimposing Fig. 4.16 onto Fig. 4.17.

as well as the values of E(k) and R(k). Based on Fig. 4.18, one can use the iterative
KM algorithm for the center-of-sets type of reducer and the centroid defuzzifier
to derive the analytical structure for each IC that has one case or more than one
case. Four ICs are selected, each of which has one case only, and their analytical
structures are listed in Table 4.11.

The MATLAB program written for this example is available for the reader to
download at this book’s publisher’s website.

4.8 TSK FUZZY PI AND PD CONTROLLERS—CONFIGURATION 55

4.8.1 Fuzzy PI Controller Configuration

The fuzzy controllers in this section differ from those in the last section because
they use (1) TSK fuzzy rules, not Mamdani rules, and (2) T2 singleton fuzzy sets
for the output. All the other components are exactly the same (i.e., any type and
number of T2 fuzzy sets for the inputs, the interval weighted-average method and
the iterative KM algorithm for the center-of-sets type of reducer, and the centroid
defuzzifier). Like before, suppose only the following four TSK fuzzy rules (out of

5Part of the material in this section is adapted from Zhou and Ying (2012; © 2012, IEEE).
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TABLE 4.11 Analytical Structures of T2 Fuzzy Controller in Four Selected ICs

IC No. ΔU(k)

1
127

150 + 40E(k) + 30R(k)
E(k) +

[
171

300 + 80E (k) + 60R(k)
+ 1

12

]
R(k)

+
[

933

300 + 80E (k) + 60R(k)
+ 149

60

]

11 − 101

210 − 40E(k)
E(k) + 9

210 − 40E(k)
R(k) +

[
1073

210 − 40E (k)
+ 33

10

]

18
127

180 + 40E(k)
E(k) +

[
3

52 + 16E (k)
− 11

120

]
R(k) +

[
1089

360 + 80E (k)
+ 27

10

]

30
127

210 − 40E(k)
E(k) + 3

84 − 16E(k)
R(k) +

[
63

21 − 4E (k)
+ 12

5

]

a total of N1 ×N2 fuzzy rules) are executed at time k:

R1∶ If E(k) is Ã1i and R(k) is Ã2j, then ΔU(k) = Cj
i + Dj

iE(k) + Ej
iR(k).

R2∶ If E(k) is Ã1i and R(k) is Ã2j+1, then ΔU(k) = Cj+1

i + Dj+1

i E(k) + Ej+1

i R(k).

R3∶ If E(k) is Ã1i+1 and R(k) is Ã2j, then ΔU(k) = Cj
i+1

+ Dj
i+1

E(k) + Ej
i+1

R(k).

R4∶ If E(k) is Ã1i+1 and R(k) is Ã2j+1, then ΔU(k) = Cj+1

i+1
+ Dj+1

i+1
E(k) + Ej+1

i+1
R(k).

where the Zadeh fuzzy AND operator is used. Intervals Cj
i, Cj+1

i , Cj
i+1

, Cj+1

i+1
, Dj

i,

Dj+1

i , Dj
i+1

, Dj+1

i+1
, Ej

i, Ej+1

i , Ej
i+1

, and Ej+1

i+1
are interval T1 fuzzy sets:

Cj
i =[c

j
i −𝜛 j

i , c
j
i +𝜛 j

i ] (4.43)

Dj
i =[d

j
i − 𝛾 j

i , d
j
i + 𝛾 j

i ] (4.44)

Ej
i =[e

j
i − 𝜀j

i, e
j
i + 𝜀j

i] (4.45)

where cj
i, dj

i, and ej
i denote the centers (i.e., means) of Cj

i, Dj
i, and Ej

i, respectively,

whereas 𝜛j
i , 𝛾

j
i , and 𝜀j

i denote, respectively, the spreads of Cj
i, Dj

i, and Ej
i [Ej

i is an
interval that is unrelated to the input variable E(k)]. These fuzzy sets are indexed by
integer superscripts and subscripts so that the input fuzzy sets and rule consequents
are mathematically linked. We use the interval coefficients because (1) there may
be situations in which one only knows the ranges for the coefficients in the rule
consequents, and (2) a single-valued coefficient is a special case of the interval T1
fuzzy set.
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The firing intervals are computed in the same way as in Eqs. (4.33)–(4.36).
Because Cj

i, Dj
i, and Ej

i are intervals and E(k) and R(k) are numbers, the computing
result for the consequent of rule Rs is an interval:

ΔUs(k) = [ΔUs
l (k),ΔUs

r(k)] (4.46)

where

ΔU1
l (k) = cj

i + dj
iE(k) + ej

iR(k) −𝜛j
i − 𝛾 j

i |E(k)| − 𝜀j
i|R(k)| (4.47)

ΔU2
l (k) = cj+1

i + dj+1

i E(k) + ej+1

i R(k) −𝜛j+1

i − 𝛾 j+1

i |E(k)| − 𝜀j+1

i |R(k)| (4.48)

ΔU3
l (k) = cj

i+1
+ dj

i+1
E(k) + ej

i+1
R(k) −𝜛 j

i+1
− 𝛾 j

i+1
|E(k)| − 𝜀j

i+1
|R(k)| (4.49)

ΔU4
l (k) = cj+1

i+1
+ dj+1

i+1
E(k) + ej+1

i+1
R(k) −𝜛j+1

i+1
− 𝛾 j+1

i+1
|E(k)| − 𝜀j+1

i+1
|R(k)| (4.50)

and

ΔU1
r (k) = cj

i + dj
iE(k) + ej

iR(k) +𝜛j
i + 𝛾 j

i |E(k)| + 𝜀j
i|R(k)| (4.51)

ΔU2
r (k) = cj+1

i + dj+1

i E(k) + ej+1

i R(k) +𝜛j+1

i + 𝛾 j+1

i |E(k)| + 𝜀j+1

i |R(k)| (4.52)

ΔU3
r (k) = cj

i+1
+ dj

i+1
E(k) + ej

i+1
R(k) +𝜛 j

i+1
+ 𝛾 j

i+1
|E(k)| + 𝜀j

i+1
|R(k)| (4.53)

ΔU4
r (k) = cj+1

i+1
+ dj+1

i+1
E(k) + ej+1

i+1
R(k) +𝜛j+1

i+1
+ 𝛾 j+1

i+1
|E(k)| + 𝜀j+1

i+1
|R(k)| (4.54)

The interval arithmetic used here is described in Mendel (2001, Theorem 7–4,
p. 228). Similar to the process in the last section, ΔUs

l (k) and ΔUs
r(k) need

to be arranged in their respective ascending orders: ΔU1∗
l (k) ≤ ΔU2∗

l (k) ≤
ΔU3∗

l (k) ≤ ΔU4∗
l (k) and ΔU1∗

r (k) ≤ ΔU2∗
r (k) ≤ ΔU3∗

r (k) ≤ ΔU4∗
r (k) [note

that ΔUs
l (k) does not necessarily correspond to ΔUs∗

l (k); this also holds
true for the relationship between ΔUs∗

r (k) and ΔUs
r(k)]. Then arrange

f
s

and f s to correspond to ΔU1∗
l (k) ≤ ΔU2∗

l (k) ≤ ΔU3∗
l (k) ≤ ΔU4∗

l (k)
and ΔU1∗

r (k) ≤ ΔU2∗
r (k) ≤ ΔU3∗

r (k) ≤ ΔU4∗
r (k), respectively, leading to

f
1∗
, f

2∗
, f

3∗
, f

4∗
and f 1∗, f 2∗, f 3∗, f 4∗. Finally

ΔUl(k) =

∑L

i=1
f

i∗
ΔUi∗

l (k) +
∑4

j=L+1
f j∗ΔUj∗

l (k)∑L

i=1
f

i∗
+

∑4

j=L+1
f j∗

(4.55)

ΔUr(k) =

∑R

i=1
f i∗ΔUi∗

r (k) +
∑4

j=R+1
f

j∗
ΔUj∗

r (k)∑R

i=1
f i∗ +

∑4

j=R+1
f

j∗ (4.56)

ΔU(k) = 1

2
[ΔUl(k) + ΔUr(k)] (4.57)
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4.8.2 Deriving the Analytical Structure

Suppose that Ã1i, Ã1i+1, Ã2j, and Ã2j+1 are as shown in Fig. 4.13. Due to the fact that
the T2 TSK controllers differ from the T2 Mamdani controllers only in the rule con-
sequent, the technique for determining the min( ) operation outcome for the TSK
controllers is identical to that for the Mamdani controllers. This is because Eqs.
(4.33)–(4.36) only involve the input fuzzy sets. Assume ΔUs∗

l (k) = ΔUs
l (k) and

ΔUs∗
r (k) = ΔUs

r(k) and, accordingly, f
s∗
= f

s
and f s∗ = f s. The rest of the deriva-

tion steps are identical to those presented in the last section since the same type
of reducer and defuzzifier are employed. Due to the highly similar derivation pro-
cesses between the Mamdani and TSK controllers, they share the same two issues
mentioned in the last section: (1) multiple cases can exist in one IC, and (2) the ana-
lytical structure of the TSK fuzzy controller for an IC can be attained only if L and
R are known. For any specific TSK fuzzy controller the exact values of L and R can
always be computed as long as all the parameters of the input fuzzy sets, controller
inputs, and the coefficients in the rule consequents are numerically available. For a
general controller configuration, however, these parameter values are not specified.
We know that only one of the cases can be for any point in the input space, but do
not know what it is until all the controller parameter values are available.

In the previous section, the input space region of [Si, Si+ 1]× [Mj, Mj+ 1] is
divided into 50 ICs (Fig. 4.14). The ICs are valid for the TSK controllers, and we
will use them to illustrate the analytical structure derivation process for the TSK
controllers. Taking IC27, which is also used as an example in the last section, one
can derive 9 different analytical structures for the 9 cases. For case 1, the analytical
structure of the TSK controller found by a Mathematica program is

ΔU(k) =
Ω1

P
E(k) +

Ω2

P
R(k) +

Ω3

P
|E(k)| + Ω4

P
|R(k)| + Ω5 + Ω7

P
E2(k)

+
Ω6

P
E(k)R(k) +

Ω8

P
E(k)|R(k)| + Ω10

P
|E(k)|R(k) + Ω12

P
|E(k)||R(k)|

+
Ω9 + Ω11

P
R2(k) +

Ω13 + Ω15

P
E2(k)R(k) +

Ω14 + Ω16

P
E(k)R2(k)

+
Ω18 + Ω20

P
|E(k)|R2(k) +

Ω17

P
R3(k) +

Ω19

P
|R3(k)|

+ Ω
P

exp

{
−
[

E (k) − Si

ai

]2
}

+
Ω21

P
(4.58)

All the coefficients are provided in Appendix 4A because they are quite messy.
Clearly, this controller is not of the PI type because of the E(k)R(k), |E(k)|R(k),
R2(k), exp(−{[E(k)− Si]/ai}

2), and the like terms in the numerators of Eq. (4.58).
Also note that all the numerators in Eq. (4.58) are constants for the Ωj.

The program also produces the analytical structures corresponding to the other
8 cases as well as the analytical structure of every combination of an IC and a case
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(there are a total of 9× 50 = 450 of such combinations). An inspection of these 450
structures reveals that they are all in the form of Eq. (4.58). Only a subset of these
450 expressions correspond to the underlying analytical structures being sought
(every point in the input space can have only 1 case, not all the 9 cases). Because
the controller is in a general setting without specific values for its parameters, one
is unable to know which structures belong to that subset.

From Section 4.4 through this section, we have discussed how to derive the
analytical structure of various T2 fuzzy controllers. All of them have two input
variables. Note that the structure-deriving methods are not restricted to two input
variables. Their overreaching principle is applicable to the T2 fuzzy controllers
involving more than two input variables. Nevertheless, for such controllers the
derivation task will be (much) more challenging. The biggest difficulty is to divide
the n-dimension input space (n≥ 3) into a number of n-dimensional ICs. Take n= 3
as an example. One must properly divide the 3D input space into many 3D ICs so
that Zadeh AND operation can be carried out for each of the fuzzy rules (at least
23 = 8 rules). Also, for all the 8 rules, there will be 2× 23 = 16 individual divi-
sions that will be superimposed to generate overall 3D ICs, as opposed to 2× 22 = 8
individual divisions (e.g., Fig. 4.5). The number of switching points will also be
greater, that is, L= 1∼ 7 and R= 1∼ 7, resulting in a total of 7× 7= 49 different
cases. Obviously, if the dimension is higher than 3, obtaining the ICs will be even
more challenging. Fortunately, 2 or 3 input variables are usually sufficient for many
important control applications.

4.9 ANALYZING THE DERIVED ANALYTICAL STRUCTURES6

The analytical structure of the various T2 fuzzy PI and PD controllers derived in
Sections 4.4–4.8 reveal these fuzzy controllers to be equivalent to nonlinear PI or
PD controllers with variable gains and a variable control offset. Since the turn of
the 1990s the analytical structure of a variety of T1 fuzzy PI and PD controllers
has been studied, and their structures are widely known to be nonlinear PI and
PD controllers with variable gains, usually without the variable offset term (Ying,
2000). The results in the preceding sections offer an unprecedented opportunity to
more insightfully and rigorously examine the differences between the T2 and T1
fuzzy controllers from a control theory standpoint.

We now focus on the T2 fuzzy PI controller in Section 4.5 and analyze charac-
teristics of its analytical structure with respect to that of the corresponding T1 fuzzy
PI controller. By corresponding T1 controller, we mean the T1 controller that a T2
controller degenerates to when its T2 components degenerate to T1 types. Obvi-
ously, every T2 controller has its corresponding T1 controller. Consequently, the
principle of the comparison work applies to the rest of the T2 controllers in this
chapter and beyond.

6Part of the material in this section is adapted from Du and Ying (2010; © 2010, IEEE).
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The derivation in Section 4.5.2 is general in that the controller parameters can
be any values. For an easier and more insightful analysis, let us suppose, relative to
the parameter values set in Fig. 4.6b, that

L1 = L2 = L 𝜃1 = 𝜃2 = 𝜃 P1 = P2 = P

b1 = b b4 = −b b2 = b3 = 0 (4.59)

where b> 0. These assumptions are not restrictive as the analysis is applicable to
any other parameter value settings. Note that when L1 = L2, the rectangular over-
all region in Fig. 4.6b becomes a square. Due to Eq. (4.59), the expressions for
the variable gains and the variable control offset are substantially simplified. The
variable proportional gain, Kp(e(k), r(k)), of the T2 fuzzy PI controller is already
listed IC by IC in Table 4.5. The expressions for the integral gain, Ki(e(k), r(k)),
and the offset are provided in Tables 4.12 and 4.13, respectively. The mathematical
structures of the variable integral gain are similar to those of the variable propor-
tional gain shown in Table 4.5. These parameter settings will be used to conduct the
following analysis. For brevity, only the fuzzy PI controllers will be used without
involvement of the fuzzy PD controllers and only Kp(e(k), r(k)) will be discussed
[the result is applicable to Ki(e(k), r(k)] due to the mathematical similarity between
Kp(e(k), r(k)) and Ki(e(k), r(k)).

4.9.1 Structural Connection with the Corresponding T1 Fuzzy PI

Controller

The T2 fuzzy PI controller contains its corresponding T1 fuzzy PI controller as
a special case when 𝜃1 = 𝜃2 = 0. Therefore, Kp(e(k), r(k)) of the corresponding T1
fuzzy PI controller is obtained by letting 𝜃 = 0 in Table 4.5:

Kp(e(k), r(k)) =

⎧⎪⎪⎨⎪⎪⎩

kΔUkrb

2
(
2L − ke |e (k)|) IC1 and IC3

kΔUkrb

2(2L − kr|r(k)|) IC2 and IC4

Note that when 𝜃 = 0, IC5–IC16 no longer exists (Fig. 4.19). Incidentally, the
proportional-gain expression for the T1 fuzzy controller is exactly the same as that
derived for the T1 fuzzy controller with the same configuration, which was studied
before the era of T2 fuzzy control (e.g., Ying et al., 1990). This fact also indi-
rectly validates the correctness of the T2 structure derivation results. Obviously,
the proportional gains of the T2 and T1 PI controllers share similar mathematical
structures.

To better present the similarities, how the proportional gains vary with e(n) and
r(n) in IC1–IC4 are plotted in Fig. 4.20 where without loss of generality, 𝜃 = 0.3,
L= b= 1, and ke = kr = kΔU = 1. The characteristics of the variable gains indeed
look quite similar. The control surfaces of these T2 and T1 controllers under this
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TABLE 4.12 Variable Integral-gain Ki(e(k), r(k)) when T2 Controller Uses
Parameter Values Given in Eq. (4.59)

IC No. Ki(e(k), r(k))

1 and 3

kΔUkeb

32

[
4

2L (1 − 𝜃) − ke|e(k)| + 4

2L(1 + 𝜃) − ke|e(k)|
+ 1

2L (1 − 2𝜃) − ke|e(k)| + 1

2L(1 + 2𝜃) − ke|e(k)| + 6

2L − ke|e(k)|
]

2 and 4

kΔUkeb

32

[
4

2L (1 − 𝜃) − kr|r(k)| + 4

2L(1 + 𝜃) − kr|r(k)|
+ 1

2L (1 − 2𝜃) − kr|r(k)| + 1

2L(1 + 2𝜃) − kr|r(k)| + 6

2L − kr|r(k)|
]

5, 8, 9
and 12

kΔUkeb

32

[
2

2L − ke |e (k)| + kr|r(k)| + 2

5L + 6𝜃L − 2ke|e(k)| − kr|r(k)|
+ 2

3L + 2𝜃L − 2ke|e(k)| + kr|r(k)| + 2

4L + 4𝜃L − ke|e(k)| − kr|r(k)|
+ 2

2L + 2𝜃L − ke |e (k)| + 4

3L + 2𝜃L − ke|e(k)|
]

6 and 10

kΔUkeb

32

[
2

3L + 2𝜃L + ke |e (k)| − 2kr|r(k)| + 4

2L + ke|e(k)| − kr|r(k)|
+ 2

L + 2𝜃L − ke|e(k)| + 4

3L + 2𝜃L − kr|r(k)|
+ 1

2L + 2𝜃L − kr |r (k)| + 1

L

]

7 and 11

kΔUkeb

32

[
2

5L + 6𝜃L − ke |e (k)| − 2kr|r(k)| + 4

4L + 4𝜃L − ke|e(k)| − kr|r(k)|
+ 4

3L + 2𝜃L − ke|e(k)| + 1

2L + 2𝜃L − kr|r(k)|
+ 2

3L + 2𝜃L − kr |r (k)| + 1

L

]

13 and 15

kΔUkeb

32

[
2

3L − 2𝜃L − ke |e (k)| + 4

3L + 2𝜃L − ke|e(k)| + 2

2L + 2𝜃L − ke|e(k)|
+ 2

3L + 6𝜃L − ke |e (k)| + 1

2L + 4𝜃L − ke|e(k)| + 1

2L − ke|e(k)|
]

14 and 16

kΔUkeb

32

[
4

3L − 2𝜃L − kr |r (k)| + 8

3L + 2𝜃L − kr|r(k)|
+ 2

2L + 2𝜃L − kr|r(k)| + 4

3L + 6𝜃L − kr|r(k)| + 1

2L + 4𝜃L − kr|r(k)|
+ 1

2L − kr |r (k)| + 1

L(1 + 2𝜃)
+ 1

L(1 − 2𝜃)
+ 2

L

]
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TABLE 4.13 Variable Offset 𝜹(e(k), r(k)) When T2 Controller Uses Parameter
Values Given in Eq. (4.59)

IC No. 𝛿(e(k), r(k))

1, 2, 3,
and 4

0

5

kΔUb

32

{
3 − 2𝜃 + 4L

3L + 2L𝜃 − kr [r (k)]
+ 8L (1 − 2𝜃)

3L + 2L𝜃 − ke [e (k)]

+ L (1 − 6𝜃)
2L + 2L𝜃 − ke [e (k)]

+ 2L (1 − 6𝜃)
2L + kr [r (k)] − ke [e (k)]

+ 2L (3 − 2𝜃)
4L + 4L𝜃 − ke [e (k)] − kr [r (k)]

+ 2L (1 − 2𝜃)
5L + 6L𝜃 − 2ke [e (k)] − kr [r (k)]

+ 2L (1 − 2𝜃)
L − 2L𝜃 + kr [r (k)]

− 8L𝜃
3L + 2L𝜃 − 2ke [e (k)] + kr [r (k)]

}

6

kΔUb

32

{
3 − 2𝜃 + 4L

3L + 2L𝜃 − ke [e (k)]
+ 8L (1 − 2𝜃)

3L + 2L𝜃 − kr [r (k)]

+ L (1 − 6𝜃)
2L + 2L𝜃 − kr [r (k)]

+ 2L (1 − 6𝜃)
2L + ke [e (k)] − kr [r (k)]

+ 2L (3 − 2𝜃)
4L + 4L𝜃 − ke [e (k)] − kr [r (k)]

+ 2L (1 − 2𝜃)
5L + 6L𝜃 − ke [e (k)] − 2kr [r (k)]

+ 2L (1 − 2𝜃)
L − 2L𝜃 + ke [e (k)]

− 8L𝜃
3L + 2L𝜃 + ke [e (k)] − 2kr [r (k)]

}

7

kΔUb

32

{
1 + 2𝜃 − 2L (1 + 2𝜃)

2L − ke [e (k)] − kr [r (k)]
− L (1 + 2𝜃)

2L + 2L𝜃 − kr [r (k)]

− 2L (1 + 2𝜃)
3L + 2L𝜃 − ke [e (k)] − 2kr [r (k)]

+ 2L (1 + 2𝜃)
4L + 4L𝜃 + ke [e (k)] − kr [r (k)]

+ 2L (1 + 2𝜃)
3L + 2L𝜃 − ke [e (k)]

}

8

kΔUb

32

{
2L (1 + 2𝜃)

2L + ke [e (k)] + kr [r (k)]
+ L (1 + 2𝜃)

2L + 2L𝜃 + ke [e (k)]

− 2L (1 + 2𝜃)
3L + 2L𝜃 − kr [r (k)]

+ 2L (1 + 2𝜃)
3L + 2L𝜃 + 2ke [e (k)] + kr [r (k)]

− 2L (1 + 2𝜃)
4L + 4L𝜃 + ke [e (k)] − kr [r (k)]

− 1 − 2𝜃

}

9

kΔUb

32

{
2𝜃 − 3 − 8L (1 − 2𝜃)

3L + 2L𝜃 + ke [e (k)]
− 2L (1 − 6𝜃)

4L + 4L𝜃 + 2ke [e (k)]

− 4L
3L + 2L𝜃 + kr [r (k)]

− 2L (1 − 6𝜃)
2L + ke [e (k)] − kr [r (k)]

− 2L (3 − 2𝜃)
4L + 4L𝜃 + ke [e (k)] + kr [r (k)]

− 2L (1 − 2𝜃)
5L + 6L𝜃 + 2ke [e (k)] + kr [r (k)]

+ 8L𝜃
3L + 2L𝜃 + 2ke [e (k)] − kr [r (k)]

+ 2L (1 − 2𝜃)
2L𝜃 − L + kr [r (k)]

}
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TABLE 4.13 (Continued)

IC No. 𝛿(e(k), r(k))

10

kΔUb

32

{
2𝜃 − 3 − 8L (1 − 2𝜃)

3L + 2L𝜃 + kr [r (k)]
− 2L (1 − 6𝜃)

4L + 4L𝜃 + 2kr [r (k)]

− 4L
3L + 2L𝜃 + ke [e (k)]

− 2L (1 − 6𝜃)
2L − ke [e (k)] + kr [r (k)]

− 2L (3 − 2𝜃)
4L + 4L𝜃 + ke [e (k)] + kr [r (k)]

− 2L (1 − 2𝜃)
5L + 6L𝜃 + ke [e (k)] + 2kr [r (k)]

+ 8L𝜃
3L + 2L𝜃 + 2kr [r (k)] − ke [e (k)]

+ 2L (1 − 2𝜃)
2L𝜃 − L + ke [e (k)]

}

11

kΔUb

32

{
2L (1 + 2𝜃)

2L + ke [e (k)] + kr [r (k)]
− 2L (1 + 2𝜃)

3L + 2L𝜃 − ke [e (k)]

+ 2L (1 + 2𝜃)
4L + 4L𝜃 + 2kr [r (k)]

+ 2L (1 + 2𝜃)
3L + 2L𝜃 + ke [e (k)] + 2kr [r (k)]

− 2L (1 + 2𝜃)
4L + 4L𝜃 − ke [e (k)] + kr [r (k)]

− 1 − 2𝜃

}

12

kΔUb

32

{
1 + 2𝜃 − 2L (1 + 2𝜃)

2L − ke [e (k)] − kr [r (k)]
− 2L (1 + 2𝜃)

4L + 4L𝜃 − 2ke [e (k)]

− 2L (1 + 2𝜃)
3L + 2L𝜃 − 2ke [e (k)] − kr [r (k)]

+ 2L (1 + 2𝜃)
4L + 4L𝜃 − ke [e (k)] + kr [r (k)]

+ 2L (1 + 2𝜃)
3L + 2L𝜃 + kr [r (k)]

}

13

kΔUb

32

{
4 + 2L (1 − 6𝜃)

3L − 2L𝜃 − ke [e (k)]
+ 4L (1 − 2𝜃)

3L + 2L𝜃 − ke [e (k)]

− 4L𝜃
2L − ke [e (k)]

+ 2L (1 + 2𝜃)
3L + 6L𝜃 − ke [e (k)]

− 4L𝜃
2L + 2L𝜃 − ke [e (k)]

}

14

kΔUb

32

{
4 + 2L (1 − 6𝜃)

3L − 2L𝜃 − kr [r (k)]
+ 4L (1 − 2𝜃)

3L + 2L𝜃 − kr [r (k)]

+ 2L (1 + 2𝜃)
3L + 6L𝜃 − kr [r (k)]

− 4L𝜃
2L − kr [r (k)]

− 4L𝜃
2L + 2L𝜃 − kr [r (k)]

}

15

kΔUb

32

{
4L𝜃

2L + ke [e (k)]
− 2L (1 − 6𝜃)

3L − 2L𝜃 + ke [e (k)]

− 4L (1 + 2𝜃)
3L + 2L𝜃 + ke [e (k)]

− 4 + 4L𝜃
2L + 2L𝜃 + ke [e (k)]

− 2L (1 + 2𝜃)
3L + 6L𝜃 + ke [e (k)]

}

16

kΔUb

32

{
4L𝜃

2L + kr [r (k)]
− 2L (1 − 6𝜃)

3L − 2L𝜃 + kr [r (k)]
− 4

+ 4L𝜃
2L + 2L𝜃 + kr [r (k)]

− 4L (1 − 2𝜃)
3L + 2L𝜃 + kr [r (k)]

− 2L (1 + 2𝜃)
3L + 6L𝜃 + kr [r (k)]

}
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R(k)
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L2

−L2
−L1 L1

Figure 4.19 ICs for the T1 fuzzy PI controller comparable to the T2 fuzzy PI controller
when 𝜃1 = 𝜃2 = 0.

parameter setting are also provided (Fig. 4.21), which are quite similar. It should
be understood that the similarities in the variable gains and control surface are
independent of the values of the parameters involved. These similarities should not
come as a surprise. After all, the T2 fuzzy PI controller is equal to the average of
two T1 fuzzy PI controllers [i.e., ΔUmin

j (n) represents one controller and ΔUmax
j (n)

represents another and their average is due to the centroid defuzzifier].
Analytically speaking, the use of the T2 input fuzzy sets makes infinitely many

different (but somewhat similar) nonlinear PI controllers as opposed to only one
controller of the same kind in the case of the T1 fuzzy controllers. The charac-
teristics of the gains are parameterized by 𝜃 and are adjustable by it (this is the
reason why there exist infinite versions of similar nonlinear PI controllers). We
now analyze how 𝜃 influences the characteristics of the variable gains.

4.9.2 Characteristics of the Variable Gains of the T2 Fuzzy PI

Controller

Our analysis will focus on the T2 fuzzy PI controller in IC1–IC4 only. This is
the most important region for the controller operation because (1) it contains the
system’s equilibrium point (kee(k), krr(k)) = (0, 0), and (2) when the controller
operates outside of these ICs, at least one of the two input variables is fuzzified
by the flat portions of the T2 fuzzy sets (i.e., when their membership functions are
either 0 or 1; see Fig. 4.2). Furthermore, one only needs to analyze the proportional
gain because the integral gain is proportional to it due to

Kp(e(k), r(k))
Ki(e(k), r(k))

=
kr

ke
(4.60)
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Figure 4.20 Three-dimensional plots of the variable proportional gain of the (a) T2 fuzzy
PI controller, and that of its corresponding (b) T1 fuzzy PI controller when 𝜃 = 0.3, L =
b = 1, and ke = kr = kΔU = 1.
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Figure 4.21 Control surface of the (a) T2 fuzzy PI controller and that of its corresponding
(b) T1 fuzzy PI controller when 𝜃 = 0.3, L = b = 1, and ke = kr = kΔU = 1.

Moreover, note that (1) the gain expression for IC1 and IC3 is the same as that
for IC2 and IC4 if ke|e(k)| and kr|r(k)| exchange their positions; and (2) the gain
expressions for IC1 and IC3 are symmetrical with respect to the r(k) axis, and those
for IC2 and IC4 are symmetrical with respect to the e(k) axis. Hence, for the T2
controller, it suffices to study the proportional-gain variation characteristics for IC1,
which is
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Kp(e(k), r(k)) =
kΔUkrb

32

[
4

2L (1 − 𝜃) − kee(k)
+ 4

2L(1 + 𝜃) − kee(k)

+ 1

2L (1 − 2𝜃) − kee(k)
+ 1

2L(1 + 2𝜃) − kee(k)
+ 6

2L − kee(k)

]
(4.61)

The valid range for 𝜃 is [0, 0.5) (Fig. 4.2).

Property 4.1 The size of the area occupied by IC1–IC4 decreases with the
increase of 𝜃.

Furthermore, 𝜃 determines the size of each IC, including IC1–IC4. The larger
the value of 𝜃, the smaller the area of IC1–IC4. More specifically, each side of the
square formed by IC1–IC4 is 2L− 4L𝜃.

Property 4.2 Keeping 𝜃 constant, the proportional gain monotonically increases
with the increase of e(k). The maximal proportional-gain Kmax(𝜃) and the mini-
mal proportional-gain Kmin(𝜃) are reached when kee(k)=L− 2𝜃L and kee(k)= 0,
respectively:

Kmax(𝜃) =
kΔUkrb

32L

(
4

1 + 4𝜃
+ 1

1 − 2𝜃
+ 1

1 + 6𝜃
+ 6

1 + 2𝜃
+ 4

)
(4.62)

Kmin(𝜃) =
kΔUkrb

32L

(
4

1 − 𝜃2
+ 1

1 − 4𝜃2
+ 3

)
(4.63)

This property can be understood from Eq. (4.61). When e(k) increases, the val-
ues of all the five fraction expressions in Eq. (4.61) will monotonically increase,
leading to a higher proportional gain. This can also be seen from the 3D plot in
Fig. 4.20a. It is trivial to determine the maximal gain and the minimal gain as stated
in Eqs. (4.62) and (4.63). Note that kee(k)=L− 2𝜃L indicates that kee(k) reaches
one of the boundaries of IC1 (Fig. 4.6b).

Property 4.3 Minimal proportional-gain Kmin(𝜃) increases with 𝜃 monotonically,
whereas Kmax(𝜃) does not, leading to a nonmonotonic relationship for the gain ratio
Kmax(𝜃)/Kmin(𝜃) with respect to 𝜃.

It is obvious that Kmin(𝜃) increases as the denominators of the two fraction
expressions in Eq. (4.63) increase with 𝜃. In order to prove thatKmax(𝜃) is nonmono-
tonic, solve dKmax

(𝜃)∕𝜃 = 0 and find that Kmax(𝜃) achieves its minimum 0.387 when
𝜃 = 0.272. That means Kmax(𝜃) decreases when 𝜃 is in [0, 0.272] and increases
when 𝜃 belongs to [0.272, 0.5]. Figure 4.22a shows how Kmax(𝜃) and Kmin(𝜃) vary
with 𝜃. Subsequently, Kmax(𝜃)/Kmin(𝜃) shows a nonmonotonic relationship with
respect to 𝜃, which is plotted in Fig. 4.22b. It can be calculated that the mini-
mum ratio 134.1% takes place when 𝜃 = 0.383 and the ratio becomes 200% either
when 𝜃 = 0 or when 𝜃 approaches to 0.5. Importantly though, the area of IC1–IC4
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becomes smaller and smaller as 𝜃 goes closer and closer to 0.5. Thus, too large a 𝜃
may not necessarily be desirable.

As a reference, it can be computed on the basis of the above analytical
structure for the T1 fuzzy PI controller; the maximal and minimal gains are
Kmax(0)=KΔUKrb/(2L) and Kmin(0)= KΔUKrb/(4L), respectively. Consequently,
the gain ratio range is [100%, 200%], meaning the variable gain can be anywhere
between the minimal gain and up to two times of it.

These three properties are investigated for the variable proportional gain in IC1.
They hold true for IC3 by letting kee(k) be ke|e(k)| where kee(k)∈ [−L+ 2𝜃L, 0].
They are also valid for IC2 and IC4—just replace Kee(k) by krr(k) for IC2 or by
kr|r(k)| for IC4.

The variable integral gain shares the same three properties due to Eq. (4.60).
With these three properties, the T2 and T1 fuzzy PI controllers can be compared

in terms of gain characteristics. Property 1 says that the size of the area occupied by
IC1–IC4 decreases with the increase of 𝜃. Since the T1 fuzzy PI controller has the
minimum value of 𝜃, that is, 𝜃 = 0, the area size of theT1 fuzzy PI (or PD) controller
is always larger than that of the T2 fuzzy PI controller when 𝜃 ≠ 0. Property 2
indicates the changing trend of the variable gains for the T2 fuzzy PI controller
with respect to the input variables. Because the T1 controller is the special case of
the T2 controller, the variable gains of the T1 controller have the same tendency.
For the T1 fuzzy PI controller, the minimal proportional gain is

Kmin(0) =
KΔUKrb

4L

when kee(k)= 0 and the maximal proportional gain is

Kmax(0) =
kΔUkrb

2L

Property 3 indicates that the minimal proportional-gain gain of the T1 fuzzy con-
troller is always smaller than that of the T2 fuzzy controller. The gain ratio of the
T1 fuzzy controller is always greater than or equal to that of the T2 fuzzy controller.

This line of analyses is directly applicable to the related T2 and T1 fuzzy PD
controllers and can be extended to the other ICs of the T2 fuzzy controllers.

4.10 DESIGN GUIDELINES FOR THE T2 FUZZY PI AND PD

CONTROLLERS7

The derived analytical structures in Sections 4.4–4.8 not only enable the insight-
ful, precise analyses conducted in the previous section but also make it possible
to empower design of the controllers. We now discuss design of the T2 fuzzy PI

7Part of the material in this section is adapted from Du and Ying (2010; © 2010, IEEE).
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Figure 4.22 (a) Variations of Kmax(𝜃) and Kmin(𝜃) with 𝜃 (up to 0.49) for the T2 fuzzy
PI controller, and (b) how the gain ratio (solid line) and the side length of the square area
formed by IC1 to IC4 (dotted line) vary with 𝜃.

(or PD) control systems,with a focus on the controller configuration in Sections 4.5.
This discussion has relevance to the other T2 fuzzy PI and PD controllers in this
book and beyond.

Even though the T2 fuzzy PI and PD controllers in Section 4.5 are relatively
simple in terms of the numbers of input fuzzy sets (only 2 fuzzy sets per input
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variable and they are all linear fuzzy sets), output fuzzy sets (4 singleton fuzzy
sets), and fuzzy rules (only 4 of them), the number of design parameters is still as
many as 11, very high if compared to the most popular controller in the world—the
PID controller that has only 3. The parameters are 𝜃1, 𝜃2, L1, L2, ke, kr, kΔU, b1, b2,
b3, and b4. Manually tuning all of them in a trial-and-error fashion is impractical.
Design guidelines below may reduce the burden.

4.10.1 Determination of 𝜽1 and 𝜽2 Values

As a benefit of the analytical structure derivation and gain characteristics analysis,
one is now able to treat the T2 fuzzy PI and PD controllers as nonlinear controllers
with variable gains, rather than blackbox controllers. Because of the availability of
the analytical structures, the roles that 𝜃1 and 𝜃2 play can now be clearly understood
from a control theory standpoint as opposed to vague and subjective measures of
uncertainties of the T2 input fuzzy sets treated from the angle of linguistic knowl-
edge representation (e.g., the larger the 𝜃1 or 𝜃2, the more uncertainty in the input
fuzzy sets are captured and represented). Furthermore, the system analysis or design
techniques in the well-established nonlinear control theory are in principle appli-
cable now. These include local, global, or bounded-input bounded-output stability,
Lyapunov stability analysis, phase plane analysis, and describing function analy-
sis. To reduce the number of design parameters, we suggest to choosing 𝜃1 = 𝜃2 = 𝜃
for most applications. Compared to the T1 fuzzy controllers, 𝜃 represents an extra
degree of freedom for the system developer. Depending on control requirements,
one may choose different gain ratios by using different values of 𝜃 (Fig. 4.22b). If
a higher ratio is desired, use of a smaller 𝜃 may be appropriate. For certain non-
linear systems, a higher gain ratio may be beneficial to control performance. For
instance, the analytical structure and gain variation characteristics of the T1 Mam-
dani fuzzy PI controller whose gain ratio was inherently fixed at 200% was studied
and the controller was successfully applied to the real-time control of mean arterial
pressure in postoperative open-heart patients during their recovery in the Cardiac
Surgical Intensive Care Unit (Ying et al., 1992). Whether a higher gain ratio is
always desirable for T2 fuzzy control remains an open question and is worth further
investigation.

As pointed out earlier, the larger the 𝜃, the smaller the square area formed by
IC1–IC4 (Fig. 4.22b). Recall that each side of the square is 2L− 4L𝜃 and when 𝜃
approaches to 0.5, the square will be close to disappearing. Too small a square may
not be desirable.Thus, the value of 𝜃 should be appropriately selected for the system
to be controlled. Because this issue is being discussed in the context of nonlinear
control, a formula is not expected to be derived that is capable of calculating the
proper value of 𝜃 for any given system. A certain amount of experimentation (e.g.,
computer simulation) seems to be inevitable in order to find the optimal 𝜃 for a
specific system. It is possible that a number of different combinations of 𝜃 values
and square area sizes will produce the same or similar performances that are all
satisfactory to the developer. This scenario is universally encountered throughout
designs of conventional control systems, linear or nonlinear.
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4.10.2 Determination of the Remaining Nine Parameter Values

The remaining parameters are L1, L2, ke, kr, kΔU, b1, b2, b3, and b4; and L1 and ke are
related, as are L2 and kr. In a practical application, L1 and L2 represent the ranges
of the input physical variables and hence are specified. The ranges should be used
as L1 and L2. If the actual ranges are unknown (e.g., in a study with a hypothetical
setting), it is appropriate to set L1 and L2 at arbitrary levels, say 1. This is because
ke and kr are allowed to take any values, which enables one to always find suitable
values for these two parameters regardless of the values of L1 and L2. For many
control needs, letting b2 = b3 = 0 and b1 =− b4 is proper (Fig. 4.4). Since kΔU, b1,
and b4 are related (they always appear as a product), one should fix b1 and b4 first
(e.g., let b1 =− b4 = 1). What remains to be determined are ke, kr, and kΔU.

Based on the analytical structures derived above, they can be determined
using the technique developed in Ying (1994b) for the related T1 fuzzy PI
and PD controllers. The basic idea is this: At the equilibrium point [i.e., when
e(k)= r(k)= 0], both the proportional gain and integral gain of the T2 fuzzy
PI controller become fixed. As an example, from the above assumptions about
the parameters (e.g., L1 = L2 = 1), the proportional gain for IC1–IC4 given in
Table 4.5 becomes

Kp(0, 0) =
kΔUkr

64

(
4

1 − 𝜃
+ 4

1 + 𝜃
+ 1

1 − 2𝜃
+ 1

1 + 2𝜃
+ 6

)
Owing to Eq. (4.60),

Ki(0, 0) =
kΔUke

64

(
4

1 − 𝜃
+ 4

1 + 𝜃
+ 1

1 − 2𝜃
+ 1

1 + 2𝜃
+ 6

)
Now, apply the linear PI controller to the system to be controlled. The system can
be as complex as being nonlinear, time varying, and with time delay. Worse (but
more realistically), its mathematical model is unknown. Tune the proportional gain
and integral gain of the linear PI controller to achieve a reasonable system output
performance (e.g., the output is merely stable) such that the proportional gain and
integral gain at that time are K∗

P and K∗
i , respectively. This can usually be achieved

rather easily and quickly because it iswell known that this can be done for a linear PI
controller. The initial values of ke, kr, and kΔU (and 𝜃, if desired) can be determined
by using

kΔUkr

64

(
4

1 − 𝜃
+ 4

1 + 𝜃
+ 1

1 − 2𝜃
+ 1

1 + 2𝜃
+ 6

)
= K∗

p

kΔUkr

64

(
4

1 − 𝜃
+ 4

1 + 𝜃
+ 1

1 − 2𝜃
+ 1

1 + 2𝜃
+ 6

)
= K∗

i

There are three (or four, if 𝜃 is included) unknowns in two equations. Hence the
solution is not unique, and indeed there are infinite sets of solutions. One solution
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can be selected that uses the initial values of the parameters to control the system,
after which they can be fine tuned to achieve the desired system performance.

This technique is applicable to all the T2 fuzzy PI (and PD) controllers in this
chapter because their analytical structures are known—nonlinear PI (and PD) con-
trollers with variable gains plus a variable control offset, which are similar to the
fuzzy PI controller in the present Section.

4.11 SUMMARY

Analytical structure-deriving techniques for four different classes of interval T2
Mamdani fuzzy controllers and one type of interval T2 TSK fuzzy controllers, all of
which employ Zadeh AND operator (see Table 4.1), have been presented. Regard-
less of the controller configurations, one common step in the structure derivation is
the necessity of dividing the input space into a number of ICs thanks to the min( )
operation. The number of ICs is much more for the T2 controllers than for the com-
parable T1 fuzzy controllers because every input fuzzy set for the T2 controller
has two membership functions (i.e., the upper and lower membership functions)
instead of just one as in the case of the T1 fuzzy sets used by the T1 controllers
(Section 4.9.1 shows an example). This difference alone makes the derivation and
subsequent analysis of the analytical structure of the T2 controllers more compli-
cated.

Table 4.14 summarizes the analytical structure results obtained by the five
structure-deriving techniques for the five classes of the T2 controllers covered in
this chapter. The results for the controller configurations 1–3 are all general—the
T2 fuzzy controllers are equivalent to the nonlinear PI (or PD) controllers with
variable gains plus a variable control offset. Only part of the result for the
controller configuration 4 is general—the T2 fuzzy controllers are equivalent to
nonlinear PI (or PD) controllers with variable gains plus a variable control offset
if and only if all the input fuzzy sets are piecewise linear. The results for the
remaining controllers in configuration 4 and all the controllers in configuration 5
are not general. Whether or not a general conclusion can be attained for a class
of controllers depends on the nature of controllers’ components. The input fuzzy
sets play an important role—when they are linear or piecewise linear (e.g., the
triangular type and the trapezoidal type), it is very likely that a general conclusion
can be made.

For controller configurations 4 and 5 where the iterative KM algorithm is used in
the center-of-sets type of reducer, an additional derivation step is necessary, namely
to determine the distribution and boundaries of the case numbers in the input space.

A T2 fuzzy controller uses only one of the two fuzzy AND operators, Zadeh or
product. Deriving the analytical structure of a fuzzy controller, T1 or T2, with the
product AND operator is, relatively speaking, much easier regardless of shape of
input fuzzy sets. This is because the multiplication operation is carried out without
needing to first divide the input space into ICs, which is required by the min( )
operation. The two operators lead to substantially different analytical structures.



SUMMARY 199

TABLE 4.14 Summary of Derived Analytical Structures for Five T2
Fuzzy Controller Classes Given in Table 4.4

T2 Controller
Configuration Section Analytical Structure

1 4.4 General conclusion: nonlinear PI (or PD)
controllers with variable gains and a variable
control offset

2 4.5 General conclusion: nonlinear PI (or PD)
controllers with variable gains and a variable
control offset

3 4.6 General conclusion: nonlinear PI (or PD)
controllers with variable gains and a variable
control offset

4 4.7 General conclusion: nonlinear PI (or PD)
controllers with variable gains and a variable
control offset if and only if all the input fuzzy
sets are piecewise linear. The analytical
structure of the remaining T2 controllers
depends on the nature of the controller
components.

5 4.8 The analytical structure depends on the nature of
the controller components. No general
conclusion can be drawn.

Roughly speaking, using the product AND operator for aT2 controller willmake its
analytical structure contain terms such asE2(k),R2(k), and E(k)R(k) in its numerator
even when piecewise linear input fuzzy sets are employed. Consequently, for this
situation, the analytical structure usually cannot be presented as a nonlinear PI or
PD controller. A logical conclusion is that one operator cannot be said to be better
or worse than the other. They offer different benefits for different applications. It is
up to the controller developer to decide which AND operator to use.

Revealing the analytical structure of a T2 fuzzy controller with the min() oper-
ator is a relatively new research direction. There are not many additional results
in literature besides those for the five controller configurations in this chapter and
some other configurations dealt with in Chapter 5. One of the newest controller con-
figurations and its associated analytical structure results are given in Zhou and Ying
(2013), in which a technique is developed for deriving the analytical structure of a
broad class of typical two-input interval T2 Mamdani fuzzy controllers. A theorem
is proved that the T2 fuzzy controllers with the piecewise linear input fuzzy sets are
the sum of two nonlinear PI (or PD) controllers plus a variable control offset, each
of which is with variable gains. The theorem represents a necessary and sufficient
condition. This result differs substantially from all the existing analytical structure
results about T2 and T1 fuzzy controllers in that it is the only known structure at
this point in time that consists of the sum of two PI (or PD) controllers.
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The principle underlying the structure-deriving techniques in this book is appli-
cable to most, if not all, two-input interval T2 fuzzy controllers with Zadeh AND
operator that have not been investigated in the literature. It may also be applica-
ble to the two-input fuzzy controllers with general T2 fuzzy sets. No report exists
that covers a three-input T2 fuzzy controller. Effort in that direction can be reward-
ing; but the exploration can be substantially more challenging than dealing with
the two-input controllers. It is our view that developing new analytical structure
derivation techniques can be technically fruitful.

Based on the analytical structure results in this book as well as those in the litera-
ture, it is observed that the use of the piecewise linearT2 input fuzzy sets is essential
if one wants the nonlinear PI or PD type of control. When other types of input
fuzzy sets are employed, the analytical structure will most likely be just nonlinear
controllers with seemingly complex mathematical formulations that have no appar-
ent structural similarity to any conventional controller. Hence, it is advantageous
to employ the piecewise linear input fuzzy sets (mainly trapezoidal or triangular
fuzzy sets), if one wants a structurally understandable T2 controller.

As an important benefit of revealing the analytical structure of a T2 fuzzy con-
troller, the fuzzy controller can now be treated rigorously as a nonlinear controller,
rather than as a blackbox controller. The roles that various parameters play, such
as the footprints of uncertainty of the input fuzzy sets, can be clearly understood
from a control theory standpoint as opposed to the vague and subjective angle of
linguistic knowledge representation. Furthermore, the structure information can be
used to facilitate control system design, an almost vacuous field so far. Realizing
this potential is an interesting and rewarding research topic.

In summary, the new analytical structure results in this book together with the
results in the literature represent a stepping stone for research that explores the
structure of other T2 fuzzy controllers, paving the way for eventual realization of
all the significant benefits pointed out in Section 4.1.

APPENDIX 4A

Equation (4.58) is

ΔU(k) =
Ω1

P
E(k) +

Ω2

P
R(k) +

Ω3

P
|E(k)| + Ω4

P
|R(k)| + Ω5 + Ω7

P
E2(k)

+
Ω6

P
E(k)R(k) +

Ω8

P
E(k)|R(k)| + Ω10

P
|E(k)|R(k) + Ω12

P
|E(k)||R(k)|

+
Ω9 + Ω11

P
R2(k) +

Ω13 + Ω15

P
E2(k)R(k) +

Ω14 + Ω16

P
E(k)R2(k)

+
Ω18 + Ω20

P
|E(k)|R2(k) +

Ω17

P
R3(k) +

Ω19

P
|R3(k)|

+ Ω
P

exp

{
−
[E (k) − Sj

ai

]2
}

+
Ω21

P
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where the coefficients are

P = Λ1 + Λ2R(k) + Λ3R2(k) + Λ4 exp

{
−
[E (k) − Sj

ai

]2
}

+ Λ5R(k) exp

{
−
[E (k) − Sj

ai

]2
}

Ω = Ω22E (k) + Ω23R(k) + Ω24 |E (k)| + Ω25 |R (k)| + Ω26E2(k)

+ Ω27E(k)R(k) + Ω28E2(k) + Ω29E(k) |R (k)| + Ω31 |E (k)| R (k)

+ Ω33 |E (k)| |R (k)| + (
Ω30 + Ω32

)
R2(k) + Ω34

Ω1 = Υ3Γ1 + Θ1Υ1

Ω2 = Υ3Γ2 + Θ2Υ1 + Γ13Υ4 + Θ13Υ2

Ω3 = Υ3Γ3 + Θ3Υ1

Ω4 = Υ3Γ4 + Θ4Υ1

Ω5 = Υ3Γ5 + Θ5Υ1

Ω6 = Υ3Γ6 + Θ6Υ1 + Γ1Υ4 + Θ1Υ2

Ω7 = Υ3Γ7 + Θ7Υ1

Ω8 = Υ3Γ8 + Θ8Υ1

Ω9 = Υ3Γ9 + Θ9Υ1 + Γ2Υ4 + Θ2Υ2

Ω10 = Υ3Γ10 + Θ10Υ1 + Γ3Υ4 + Θ3Υ2

Ω11 = Υ3Γ11 + Θ11Υ1 + Γ4Υ4 + Θ4Υ2

Ω12 = Υ3Γ12 + Θ12Υ1

Ω13 = Γ5Υ4 + Θ5Υ2

Ω14 = Γ6Υ4 + Θ6Υ2

Ω15 = Γ7Υ4 + Θ7Υ2

Ω16 = Γ8Υ4 + Θ8Υ2

Ω17 = Γ9Υ4 + Θ9Υ2

Ω18 = Γ10Υ4 + Θ10Υ2

Ω19 = Γ11Υ4 + Θ11Υ2

Ω20 = Γ12Υ4 + Θ12Υ2

Ω21 = Υ3Γ13 + Θ13Υ1

Ω22 = 2Γ1 + Υ1dj+1

i
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Ω23 = 2Γ2 + Υ1ej+1

i

Ω24 = 2Γ3 + Υ1𝛾
j+1

i

Ω25 = 2Γ4 + Υ1𝜀
j+1

i

Ω26 = 2Γ5

Ω27 = 2Γ6 + Υ2dj+1

i

Ω28 = 2Γ7

Ω29 = 2Γ8

Ω30 = 2Γ9 + Υ2ej+1

i

Ω31 = 2Γ10 + Υ2𝛾
j+1

i

Ω32 = 2Γ11 + Υ2𝜀
j+1

i

Ω33 = 2Γ12

Ω34 = 2Γ13

Λ1 = Υ1Υ3

Λ2 = Υ1Υ4 + Υ2Υ3

Λ3 = Υ2Υ4
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CHAPTER 5

Analysis of Simplified Interval Type-2
Fuzzy PI and PD Controllers

5.1 INTRODUCTION

An interval type-2 (IT2) fuzzy set (FS) can be thought of as a collection of many
embeddedT1 FSs, and aT2 fuzzy logic controller (FLC)may, therefore, be concep-
tually treated as a collection of many (embedded) T1 FLCs whose crisp output is
obtained by aggregating the outputs of all the embedded T1 FLCs (see Section 1.5).
Due to the extra degree of freedoms, a T2 FLC has the potential to outperform
a T1 FLC under certain conditions. This chapter focuses on the design, proper-
ties demonstration via simulations/experiments, and theoretical analysis of interval
IT2 (IT2) fuzzy proportional plus integral (PI) or proportional plus derivative (PD)
controllers.

The structure of a typical IT2 fuzzy PI and PD controller is shown in Fig. 3.4,
where the input signals are the feedback error E(k) and the change of error R(k)
and the output signal is the change in control signal Δu(k) (PI) or the control sig-
nal u(k) (PD). As mentioned in the preview of properties of interval IT2 (IT2)
FLCs in Section 1.7, one feature is a smoother control surface than that of a T1
FLC, especially around the origin. Consequently, experimental results show that
small disturbances around the steady-state value will not result in significant con-
trol signal changes so there are less oscillations (Wu and Tan, 2006). However, the
potential performance improvement provided by IT2 FLCs comes with the cost of
higher computational power needed to implement the Karnik–Mendel (KM) type
reducer. To reduce the computational burden while preserving the advantages of
IT2 FLCs, two approaches may be considered: (1) faster type reduction methods,
such as the algorithms presented in Section 2.3.6, and (2) a simpler architecture
that reduces the computing requirement. The feasibility of the second approach
is demonstrated in this chapter. The key idea is to only replace some critical T1
FSs by IT2 sets. A procedure that uses genetic algorithm to evolve an IT2 FLC
that is robust enough to cope well with the uncertainties while having minimum
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Jerry M. Mendel, Hani Hagras, Woei-Wan Tan, William W. Melek, and Hao Ying.
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computational cost is proposed. Experimental results that establish the feasibility
of the simplified IT2 FLC structure are also presented.

Having demonstrated the properties of IT2 FLC via simulations and experimen-
tal results, a theoretical study of IT2 FLC is presented.Themotivation is to establish
more general results as the simulation and experimental analysis cannot be gener-
alized and applied into other systems due to the limitation of case studies. First,
the KM type reducer is analyzed in order to devise a methodology for partitioning
the input space such that the output for an IT2 fuzzy logic system may be explic-
itly related to the firing strength of all rules. With this breakthrough, the analytical
structure for T1 FLCs can be extended to analyze IT2 FLCs.

The chapter is organized as follows: The simplified IT2 FLC is presented in
Section 5.2, while a computational cost comparison and the potential reduction
in computing requirements provided by the simplified IT2 FLC is illustrated in
Section 5.2.3. Two type-1 FLCs and two type-2 FLCs with different degrees of
freedom are designed in Section 5.2.5, and their abilities to handle modeling
uncertainties are compared using a coupled-tank liquid-level control system.
Section 5.2.6 discusses the performances of the proposed architecture. Next, a
methodology for deriving the analytical structure for a case of IT2 PI/PD FLCs,
with the configuration defined in Section 5.3.1, is presented. The algorithm
delineated in Section 5.3.2 leverages on a property of the KM type reducer that
constrains the switch points to the location of the consequent sets to extend
the analytical structure technique for T1 FLCs. Section 5.3.3 then presents five
examples that illustrate how the analytical structure framework may be applied to
explain why an IT2 fuzzy controller has the potential to better achieve the conflict-
ing aims of fast rise time and small overshoot. Finally, conclusions are drawn in
Section 5.4.

5.2 SIMPLIFIED TYPE-2 FLCs: DESIGN, COMPUTATION,

AND PERFORMANCE1

Extensive experiments (Wu and Tan, 2006; Hagras, 2007; Hagras and Wagner,
2012) have demonstrated that IT2 FLCs have the potential to provide better control
performances as they are better able to handle disturbances, noises, and unmodeled
dynamics. The reason is that they usually have smoother control surfaces around
the (E(k),R(k)) = (0, 0) point (Wu and Tan, 2006; Wu, 2012a). However, the robust
performance of IT2 FLCs may be achieved at the cost of higher computational
requirements (Wu, 2013). To balance the control performance and computational
cost, we may employ a simplified IT2 FLC, in which IT2 FSs are only used near
the steady state and T1 FSs are used elsewhere. An example of such an IT2 FLC
is shown in Fig. 5.1. This section presents the design procedure and compares the
computational cost and control performance of the simplified IT2 FLC with T1
FLCs and traditional IT2 FLCs.

1Much of the material is taken directly from Wu and Tan (2006; © 2006, Elsevier).
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e1 e2 em−1 em em+1 eN−1 eN

e1 e2 em−1 em em+1 eN−1 eN

e1 e2 em−1 em em+1 eN−1 eN

e1 e2 em−1 em em+1 eN−1 eN

(a) (b)

(c) (d)

Figure 5.1 Example FSs of a baseline T1 FLC and a simplified IT2 FLC. (a) The N FSs
for input, E(k), of the T1 FLC, where ei is the center of the ith fuzzy set; (b) The N FSs for
input, R(k), of the T1 FLC, where ėi is the center of the ith fuzzy set; (c) FSs of E(k) of the
simplified IT2 FLC, where the middle one is an IT2 FS and all the others are T1 FSs; and
(d) FSs of R(k) of the simplified IT2 FLC, where the middle one is an IT2 FS and all the
others are T1 FSs (Wu and Tan, 2006; © 2006, Elsevier).

5.2.1 Structure of a Simplified IT2 FLC

A simplified IT2 FLC may be designed by gradually replacing T1 FSs by their IT2
counterparts until the resulting IT2 FLCmeets the robustness requirements, starting
with the FSs that characterize the region around steady state. Since the computa-
tional cost will increase significantly when the number of IT2 FSs increases, as
few IT2 FSs as possible should be introduced. For a PI-like FLC, the response near
steady state is determined mainly by the control surface around the (E(k),R(k)) =
(0, 0) origin, which is governed by the middle FSs of the error E(k) and change
of error R(k) input domains. Hence, the procedure for designing a simplified IT2
FLC is:

1. Design a baseline T1 FLC through simulation on a nominal model.

2. Change the most important input FS to IT2 FS. For the two inputs of a PI-like
FLC, the change of error, R(k), is more susceptible to noises so the FS corre-
sponding to zero R(k) is changed to IT2 first, as illustrated in Fig. 5.1d.

3. If the IT2 FLC designed above cannot cope well with the actual plant, the
FS associated with zero, E(k), is also changed to IT2 FS, as illustrated in
Fig. 5.1c.

4. If the resulting IT2 FLC is still not robust enough, more IT2 FSs may be
introduced starting from the middle of each input domain and gradually mov-
ing toward the limits of the domain. Another criterion is to use IT2 FSs to
characterize the operating region that needs a smoother control surface.

An FLC designed by the proposed procedure has two parts—a T1 part and an
IT2 part. Different fuzzy partitions will be activated when the state of the plant is in
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different operating regions. During the transient stage, the FLC behaves like a T1
FLC since no IT2 FSs are fired. When the output approaches the set point, IT2 FSs
will be fired and the plant is controlled by an IT2 FLC. Smoother control signals
will be generated, which help to eliminate oscillations.

5.2.2 Output Computation

Consider a simplified IT2 FLC that has N2 rules with crisp consequents yi, i =
1, 2, … ,N2,where N is the number of fuzzy sets for each of the two input domains.
Suppose the first M (0 < M < N2) rules contain only T1 FSs in the antecedent,
and the remaining N2 − M rules have at least one IT2 FS in the antecedent. There
will be M firing levels (fi, i = 1, 2, … , M) and N2 − M firing intervals (̃fi, i = M +
1, M + 2, … , N2). Assuming product sum fuzzy inference and the result of the
fuzzy inference engine is processed using center-of-sets type reduction (see Section
3.3.2.4), the output of the simplified IT2 FLC may be expressed as

u̇ =

∑M

i=1
ui fi +

∑N2

i=M+1
ui f̃i∑M

i=1
fi +

∑N2

i=M+1
f̃i

=
𝛽 +

∑N2

i=M+1
ui f̃i

𝛼 +
∑N2

i=M+1
f̃i

= 𝛽

𝛼
+

∑N2

i=M+1
ui f̃i −

𝛽

𝛼

∑N2

i=M+1
f̃i

𝛼 +
∑N2

i=M+1
f̃i

= 𝛽

𝛼
+

∑N2

i=M+1
(ui −

𝛽

𝛼
)̃fi

𝛼 +
∑N2

i=M+1
f̃i

(5.1)

where 𝛼 =
∑M

i=1 fi and 𝛽 =
∑M

i=1 uifi. Define u′
i and f̃N2+1 as

u′i =

{
ui −

𝛽

𝛼
i = M + 1, M + 2, … ,N2

0 i = N2 + 1

f̃N2+1 = 𝛼

then Eq. (5.1) can be further simplified to

u̇ = 𝛽

𝛼
+

∑N2+1

i=M+1
u′i f̃i∑N2+1

i=M+1
f̃i

(5.2)
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The second term on the right-hand side of Eq. (5.2) can be calculated by the
Karnik–Mendel algorithms or their enhancements described in Section 2.3.6.

5.2.3 Computational Cost

From the discussion in the previous section, the simplified IT2 FLC has reduced
computational cost when compared with traditional IT2 FLCs. The lower comput-
ing load is due to a reduction in the number of membership grades that need to be
computed and the reduction in the size of the type reduction problem.

Example 5.1 Consider T1 and IT2 fuzzy sets with triangular membership func-
tions. Let a, b, c be the apexes of the triangular membership for the T1 fuzzy set
and the upper/lower membership function of the IT2 fuzzy set. The membership
grade of an input, x, in the T1 fuzzy set or the upper/lower membership of the IT2
fuzzy set may similarly be expressed as

fi(x) =

⎧⎪⎪⎨⎪⎪⎩

b − x
b − a

a < x < b

c − x
c − b

b < x < c

0 otherwise

(5.3)

This equation involves two subtraction and one division operations. If the simplified
IT2 FLC replaces M IT2 fuzzy sets by T1 fuzzy sets, there will be a reduction of
2M subtraction and M division operations because Eq. (5.3) needs to be executed
once for a T1 set and twice for an IT2 set.

As a further study, the computational cost of simplified IT2 FLCs is quantita-
tively compared with a T1 FLC and a traditional IT2 FLC. All FLCs have two
inputs, E(k) and R(k). Each input has N equally spaced FSs, and the output domain
hasN2 numbers.TheT1 FLC is denoted asFLC1, and its FSs are shown in Figs. 5.1a
and 5.1b. The first simplified IT2 FLC is FLC2s, where only the middle FS of R(k)
is an IT2 FS, as shown in Figs. 5.1a and 5.1d. The second simplified IT2 FLC
is FLC2m, where the middle FSs of both E(k) and R(k) are IT2 FSs, as shown in
Figs. 5.1c and 5.1d. The traditional IT2 FLC is denoted as FLC2f , whose all FSs
are IT2 FSs.

We partitioned the domain of E(k), [−1, 1], into 101 equally distributed points
ei; and 101 ėi’s were generated in the same way. Thus, all possible combinations of
ei and ėi yielded 10,201 input pairs. Computational cost was evaluated by com-
paring the time needed to find outputs for these 10,201 inputs. All the experi-
ments were done by Matlab on a 996-MHz computer with 256 MB of RAM and
Windows XP. The standard KM algorithm described in Section 2.3.6 was used to
implement the type reduction step. Table 5.1 shows the results for different values
of N. Observe that the computational cost of the simplified structure is less than
half of a traditional IT2 FLC, and the saving is much more significant when N
is small.
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TABLE 5.1 Computational Cost of the Four FLCs

N \FLC FLC1 (s) FLC2s(s) FLC2m (s) FLC2f (s)

3 1.2 2.0 6.7 10.4
5 1.6 2.5 5.1 10.3
7 2.3 3.7 5.0 12.0
9 3.3 5.6 6.6 15.0

11 4.6 8.6 9.5 19.6

5.2.4 Genetic Tuning of FLC

The task of tuning the parameters of an FLC is vital for ensuring its performance.
Genetic algorithm (GA), a general-purpose search algorithm that uses principles
inspired by natural population genetics to evolve solutions to problems, is a com-
mon strategy used for tuning an FLC. The tuning method fits the membership
functions of the fuzzy sets by minimizing an error function defined using a set
of evaluation input–output data.

A GA is a general-purpose search algorithm based on the mechanics of natu-
ral selection and genetics (Holland, 1975; Goldberg, 1989). Figure 5.2 shows the
flowchart of a basic GA. The key idea behind the search process is inspired by
the natural evolution of biological creatures, where the fittest among a group of
artificial entities survive to form a new generation together with those that are pro-
duced through gene exchange. Given an initial population of candidate solutions
that are represented as strings called chromosome, GAs operate in cycles known as

Initialize population

Gen = 1

Evaluate population

Selection

Crossover

Mutation

Gen = Gen + 1

Output results

Yes

No
Gen > MaxGen

Figure 5.2 Flowchart of a basic GA (Wu and Tan, 2006; © 2006, Elsevier).
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generations. For each generation, the fitness of all individuals with respect to the
optimization task is evaluated via a scalar objective function (fitness function), and
the result of this evaluation is used to drive the Darwinian selection process. A cer-
tain percentage of every generation is also produced randomly via genetic operators
such as crossover, and mutation to provide genetic diversity, and thus increas-
ing the probability of finding the global minimal. As a result of this evolutionary
cycle of selection, crossover, and mutation, more and more suitable solutions to
the optimization problem emerge within the population. In the next subsection,
the performance of the simplified IT2 FLCs and T1 FLCs tuned via a GA-based
optimization approach is studied and compared.

5.2.5 Performance

5.2.5.1 Coupled-Tank System The control performance of the simplified
IT2 FLC is evaluated in this subsection via simulation and experimental results
obtained from a coupled-tank system shown in Fig. 3.5a and repeated as Fig. 5.3.
It consists of two small tower-type tanks mounted above a reservoir that stores the
water. Water is pumped into the top of each tank by two independent pumps, and
the levels of water are measured by two capacitive-type probe sensors. Each tank
is fitted with an outlet, at the side near the base. Raising the baffle between the
two tanks allows water to flow between them. The amount of water that returns to
the reservoir is approximately proportional to the square root of the height of the
water in the tank, which is the main source of nonlinearity in the system.

The dynamics of the coupled-tank apparatus can be described by the following
nonlinear differential equations:

A1

dH1

dt
= Q1 − 𝛼1

√
H1 − 𝛼3

√
H1 − H2 (5.4a)

A2

dH2

dt
= Q2 − 𝛼2

√
H2 + 𝛼3

√
H1 − H2 (5.4b)

where A1, A2 are the cross-sectional areas of tank 1, 2; H1, H2 are the liquid levels
in tank 1, 2; Q1,Q2 are the volumetric flow rate (cm3∕ sec) of pump 1, 2; 𝛼1, 𝛼2, 𝛼3

are the proportionality constants corresponding to the
√

H1,
√

H2 and
√

H1 − H2

terms. We assume H1 ≥ H2, which is always satisfied in the experiments.
The coupled-tank apparatus can be configured as a second-order single-input

single-output system by turning off pump 2 and using pump 1 to control the water
level in tank 2. Since pump 2 is turned off, Q2 equals zero and Eq. (5.4b) reduces to

A2

dH2

dt
= −𝛼2

√
H2 + 𝛼3

√
H1 − H2 (5.5)

Equations (5.4a) and (5.5) are used to construct a simulation model of the coupled
tank for the GA to evaluate the fitness of the candidate solutions. The parameters
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Pump 1 Pump 2

Tank 1 Tank 2

Probe 1 Probe 2

H1

H2Q3

Q1 Q2

Baffle

Outlet 1(a)

(b)

Outlet 2

Figure 5.3 Coupled-tank liquid-level control system: (a) schematic diagram and (b) exper-
imental setup (Wu and Tan, 2006; © 2006, Elsevier).

used in the simulation model are

A1 = A2 = 36.52 cm2

𝛼1 = 𝛼2 = 5.6186

𝛼3 = 10

The area of the tank was measured manually while the discharge coefficients
(𝛼1, 𝛼2, and 𝛼3) were found by measuring the time taken for a predetermined
change in the water levels to occur. Although the DC power source can supply
between 0 and 5 V to the pumps, the maximum control signal was capped
at 4.906 V, which corresponds to an input flow rate of about 75cm3/sec. To
compensate for the pump dead zone, the minimum control signal was chosen to
be 1.646 V. A sampling period of 1 sec was employed.
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5.2.5.2 Structure of the FLCs Four FLCs (FLC13, FLC15, FLC2s, and
FLC2f ) are tuned by GA. Among them, FLC13 and FLC15 are T1 FLCs, FLC2s
is a simplified IT2 FLC, and FLC2f is a traditional IT2 FLC. FLC15 has five
FSs in each input domain and the output domain is described by nine singleton
fuzzy sets as shown in Table 5.2. FLC13, FLC2s, and FLC2f have three FSs in
each input domain, which are labeled as N, Z, and P. The output space (u̇) is
characterized by five singleton fuzzy sets: NB, NS, Z, PS, and PB. The rule base
is shown in Table 5.3. The various FS operations adopted in the experiments
are the sum-product inference engine, center-of-sets type reducer, and height
defuzzifier.

5.2.5.3 GAOptimization All 4 FLCs are tuned by GA. First, the chromosome
coding scheme is described. Figure 5.4 shows the general structure of the chromo-
some used by the GA to optimize the parameters of the FLCs, and the actual length
of the chromosome varies according to the number of FLC parameters that needs to
be optimized.The domain for the feedback error input,E(k), of FLC13 is partitioned
by the 3 FSs illustrated in Fig. 5.5. The T1 fuzzy sets are defined by the 3 points
Ne, Ze, and Pe. Similarly, the 3 points that define the 3 sets for the R(k) domain are
Nė, Zė, and Pė. Another 5 numbers are needed to define the fuzzy singletons used
to characterized the output domain. The chromosome for FLC13, therefore, has a
total of 11 parameters. For FLC15, each chromosome comprises 19 genes because
5 parameters are needed to determine the T1 FSs for each input and 9 parameters
for the fuzzy singleton consequents. The first 11 genes for the simplified IT2 FLC,
FLC2s, are common with the parameters of FLC13. The next two genes in the chro-
mosome determine the FOU of the only IT2 FS used to partition the R(k) domain
of FLC2s. They define the amount by which the T1 FS is shifted (dė2l

and dė2r
in

TABLE 5.2 Rule Base of FLC15

E(k)\R(k) ė1 ė2 ė3 ė4 ė5

e1 u̇1 u̇2 u̇3 u̇4 u̇5

e2 u̇2 u̇3 u̇4 u̇5 u̇6

e3 u̇3 u̇4 u̇5 u̇6 u̇7

e4 u̇4 u̇5 u̇6 u̇7 u̇8
e5 u̇5 u̇6 u̇7 u̇8 u̇9

TABLE 5.3 Rule Base of FLC13, FLC2s, and FLC2f

E(k)\R(k) Nė Zė Pė

Ne NB NS Z
Ze NS Z PS
Pe Z PS PB
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 19181715

Sub-chromosome of e Sub-chromosome of e Sub-chromosome of u
Ne Ze Pe Ne NB NS Z PS PB de2l de2lZe Pe de2r de2r de1r de1r de3lde3l

Figure 5.4 GA coding scheme of the FLCs (Wu and Tan, 2006; © 2006, Elsevier).

Ne Ze Pe

2de2l
2de2r

Figure 5.5 Example FSs of E(k) (Wu and Tan 2006; © 2006, Elsevier).

TABLE 5.4 Plants Used to Assess Fitness of Candidate Solutions

Plant I Plant II Plant III Plant IV

A1 = A2 (cm2) 36.52
𝛼1 = 𝛼2 5.6186
𝛼3 10 10 10 8
Set point (cm) 0 → 15 0 → 22.5 → 7.5 0 → 15 0 → 15
Transport delay (s) 0 0 2 0

Fig. 5.5) to generate the FOU of the IT2 FS. In the case of FLC2f , the input domains
are partitioned by 6 IT2 FSs so the chromosome is exactly the 19 genes shown in
Fig. 5.4.

The fitness of each chromosome in the GA population is assessed by subjecting
the simulation model of the liquid-level process to step inputs. As the goal is to
explore the four FLCs’ ability to handle modeling uncertainties, each candidate
solution is used to control plantswith the four sets of parameters shown inTable 5.4.
The integral of time absolute error (ITAE) obtained for each of the four plants are
added together and used to evaluate the fitness of the FLCs:

F =
4∑

i=1

𝛼i

[
Ni∑

j=1

j ∗ ei(j)

]
(5.6)

where 𝛼i is the weight corresponding to the ITAE of the ith plant, and Ni = 200
is the number of sampling instants. There is a need to introduce 𝛼i because the
ITAE of the second plant is usually several times bigger than that of other plants.
To ensure that the ITAE of the four plants can be reduced with equal emphasis, 𝛼2

is defined as
1

3
and the other weights are unity.

The GA consisted of 200 chromosomes in each generation and optimization is
terminated after 100 generations. The crossover rate was 0.8 and the mutation rate
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Figure 5.6 FSs of the four FLCs (FLC13, FLC15, FLC2s, and FLC2f , from the top to the
bottom (Wu and Tan, 2006; © 2006, Elsevier).

was 0.1. After the crossover and mutation process, the genes in each subchromo-
some may not remain in the proper order after crossover and mutation in the sense
that the center of the type-2 set corresponding to Ne may be larger than that of Ze.
Every subchromosome is, therefore, sorted before fitness evaluation is performed.
The FSs of FLC13, FLC15, FLC2s, and FLC2f evolved by GA are shown in Fig. 5.6.
The parameters are listed in Tables 5.5 and 5.6.

5.2.5.4 Experimental Results The control performances of the four FLCs are
compared through simulation and experiments. As pointed out in Teo et al. (1998),
the volumetric flow rate of the pumps in the coupled-tank apparatus is nonlinear and
the system has nonzero transport delay. Besides, the data read by the sensor is noisy.
These characteristics are not accurately captured by the model used by the GA to
optimize the FLC parameters. Hence, the ability of the four FLCs to handle mod-
eling uncertainties can be ascertained by examining their control performances on
the actual plant. Figures 5.7 and 5.8 show the step responses for different set points
and the corresponding control signals. All four FLCs can handle the uncertainties
introduced by the pump nonlinearity and the unmodeled transport delay.

To further test the FLCs, the flow rate between the two tanks was reduced by
lowering the baffle separating the two tanks. This change gave rise to a system
with slower dynamics. In addition, the difference in liquid level between the two
tanks was larger at steady state. The corresponding step responses and the control
signals are shown in Fig. 5.9. Although the simulated step responses of the four
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TABLE 5.5 FSs of FLC13, FLC2s, and FLC2f

Nė yė Pė

(a) FSs of E(k)

FLC1 −9.0611 6.9846 16.0539
FLC2s −12.4578 8.6232 12.1405

−12.9137 3.9722 13.1283
FLC2f de1r

= 7.0388 de2l
= 5.0656, de2r

= 1.2868 de3l
= 2.4127

Nė yė Pė

(b) FSs of R(k)

FLC1 −0.8093 −0.2884 1.0538
−0.0119

FLC2s −1.4505 dė2l
= 0.9002, dė2r

= 0.4327 2.1192

−2.0186 0.6459 2.1534
FLC2f dė1r

= 0.5479 dė2l
= 0.7091, dė2r

= 0.5697 dė3l
= 0.7644

NB NS Z PS PB

(c) FSs of u̇

FLC1 −0.4985 −0.4362 0.1282 0.6613 0.9998
FLC2s −0.2906 −0.2130 0.1422 0.8490 0.8817
FLC2f −0.3967 −0.1702 0.1002 0.3802 0.9978

FLCs are satisfactory, the experimental results corresponding to the two T1 FLCs
(FLC13 and FLC15) exhibit large oscillations. The two IT2 FLCs have the ability to
eliminate these oscillations quickly, and the liquid level reaches its desired height at
steady state. Notice that the performances of the two IT2 FLCs are similar, though
they have a different number of IT2 FSs.

Lastly, the ability of the four FLCs to deal with transport delay was studied, and
the results are shown in Fig. 5.10. Once again, both IT2 FLCs outperform their T1
counterparts. The performances of the two IT2 FLCs are similar, though they have a
different number of IT2 FSs.This suggests that some IT2 FSs may not be necessary,
and the computational cost may be reduced without sacrificing robustness by using
T1 FSs in place of some IT2 FSs.

5.2.6 Discussions

Observe from Figs. 5.7–5.10 that all four FLCs gave similar simulation results.
However, the simulation and experimental results obtained using the IT2 FLCs
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TABLE 5.6 FSs of FLC15

e1 e2 e3 e4 e5

(a) FSs of E(k)

−14.8778 −7.5460 −4.7217 7.7783 12.5710

ė1 ė2 ė3 ė4 ė5

(b) FSs of R(k)

−1.7824 −0.7799 −0.0387 0.8896 1.7115

u̇1 u̇2 u̇3 u̇4 u̇5 u̇6 u̇7 u̇8 u̇9

(c) FSs of u̇

−0.6755 −0.3771 −0.3381 −0.1142 −0.0543 0.0645 0.4632 0.4921 0.5194

generally concur more with each other than the simulation and experimental results
generated using the T1 FLCs. A quantitative measure of the performances of the
four FLCs was generated by calculating the ITAE for all cases that were studied.
The result is presented in Fig. 5.11. The plot is scaled such that the ITAEs for the
step responses obtained using FLC13 is 100%. Consequently, a smaller number in
Fig. 5.11 translates to a lower ITAE, and therefore better performance. Observe that
the experimental performances achieved by the two IT2 FLCs are better than that
of the T1 FLCs. Most notably, FLC2s outperforms FLC15 even though FLC15 has
six more design parameters.

The control surfaces of the four FLCs are shown in Fig. 5.12. The control
surfaces of the two IT2 FLCs are smoother than that of FLC13 around the origin
[(E(k),R(k)) = (0, 0)], which is why the IT2 FLCs are more robust. Note that
the control surface of FLC2s is similar to that of FLC2f , even though FLC2f has
more IT2 FSs. The control surfaces provide further evidence that there will not
be significant performance deterioration when the proposed simplified IT2 FLC is
used in place of a traditional IT2 FLC where all the input sets are IT2 FSs.

In common with the standard practice in GA-based tuning of FLC parameters, a
statistical evaluation was conducted by repeatedly performing the several optimiza-
tion exercises. Five versions of each controller (FLC13, FLC15, FLC2s, and FLC2f )
were evolved and tested on the practical plant. Most of the T1 FLCs performed
poorly. The step responses either had long settling times or exhibited persistent
oscillations. FLC13 and FLC15 presented in the previous section actually have the
best performance from among the various T1 FLCs. Several IT2 FLCs from differ-
ent runs were also tested on the actual plant. The experimental results did not differ
from those presented here. This is another indication of the superior ability of IT2
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Figure 5.7 Step responses when the set point was 15 cm: (a) simulation results and (b)
experiment results (Wu and Tan, 2006; © 2006, Elsevier).

FLCs to tolerate more modeling uncertainties. When a simulation model is used to
evaluate the GA candidate solutions, the IT2 FLCs will have a higher probability
of performing well on the actual plant.

With the simplified architecture, the computational cost of resulting simplified
IT2 FLCs is much lower than that of a traditional IT2 FLC. The time taken by the
GA to evolve the four FLCs is shown in Table 5.7. The data was obtained using
a 996-MHz computer with 256 MB of RAM. A 10,000-step simulation [the set
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Figure 5.8 Step responses when the set point was changed. (a) simulation results and (b)
experiment results (Wu and Tan, 2006; © 2006, Elsevier).

point is 15 + 10 sin(i∕50), where i = 1, 2, … , 10, 000 is the time instant], using
the evolved FLCs was also run on the same computer and the computation time
is shown in Table 5.7. The results indicate that the computational cost of FLC2s
is much lower when compared with that of FLC2f . These results suggest that the
simplified IT2 FLC is more suitable for real-time implementation. It enables com-
putational cost to be reduced without a degradation in the control performance and
the ability to handle modeling uncertainties.
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Figure 5.9 Step responses when the baffle was lowered: (a) simulation results and (b)
experiment results (Wu and Tan, 2006; © 2006, Elsevier).

In summary, the simulation and experimental results indicate the smoother con-
trol surface around the (E(k),R(k)) = (0, 0) region provided by an IT2 FLC is a
potential source for performance improvement.

The remaining parts of the chapter focus on a theoretical study of a class of
IT2 FLCs in order to systematically establish the unique features of IT2 FLCs that
provide the potential of better performance. Using the technique for analysis intro-
duced in Chapter 4, the focus is to derive the equivalent nonlinear proportional,
derivative, and integral gains and study how their variations with E(k) and R(k)
equip the IT2 FLC with the potential to yield better performance.
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Figure 5.10 Step responses when there was a 2-sec transport delay: (a) simulation results
and (b) experiment results (Wu and Tan, 2006; © 2006, Elsevier).

5.3 ANALYTICAL STRUCTURE OF INTERVAL T2 FUZZY PD

AND PI CONTROLLER

5.3.1 Configuration of Interval T2 Fuzzy PD and PI Controller2

IT2 fuzzy PI and PD controllers are introduced in Section 4.3, and the general
structure is shown in Fig. 4.1.The two inputs are E(n) = Kee(n) = Ke(SP(n) − y(n))

2Much of the material is taken directly from Nie and Tan, 2012; © 2012, IEEE).
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Figure 5.11 Comparison of four FLCs on four plants: (a) simulation results and (b) exper-
iment results. I, II, III, and IV in horizontal axis stands for Plant I, Plant II, Plant III, and
Plant IV in Table 5.4, respectively. Sum means the sum of the ITAEs on the four plants
(Wu and Tan, 2006; © 2006, Elsevier).

[Eq. (4.7)] and R(n) = Krr(n) = Kr(e(n) − e(n − 1)) (Eq. 4.8), where SP(n) is the
reference signal, y(n) is the output of the closed-loop system, Ke and Kr are the
scaling constants. Then, the output of the controller may be defined as

Δu(n) = f (E(n),R(n)) (5.7)

The outputΔu(n)may be interpreted directly as the control signal or as the rate of
change in the actuation signal. Depending on how the output of the fuzzy controller
is defined, it may be interpreted as a fuzzy PD or a fuzzy PI controller.
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Figure 5.12 Control surfaces of the four FLCs: (a) complete control surfaces and
(b) control surfaces near the origin (Wu and Tan, 2006; © 2006, Elsevier).
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TABLE 5.7 Comparison of Computational Cost

Item\FLC FLC13 FLC15 FLC2s FLC2f

GA tuning (sec) 500 550 1200 4500
Simulation (sec) 1.28 1.40 3.19 11.70

For this study, two IT2 FSs are used to partition the space of each input: EN and
EP for E(n), RN and RP for R(n). By shifting the membership of two symmetrical
T1 FSs horizontally by the amount of 𝜃1, the upper and lower membership of EN
and EP, EN, EN, EP, and EP in Fig. 5.13a, can be obtained (refer to Chapter 4). In
the same way, 𝜃2 represents the amount by which the upper and lower membership

of RN and RP are shifted to obtain RN, RN, RP, and RP in Fig. 5.13b. Based
on whether its value depends on the inputs, the lower bound or upper bound of
any antecedent set can be decomposed into dependent part or independent segment
(0 or 1). For example,

EN =
⎧⎪⎨⎪⎩
− 1

2L1

E(n) + 0.5 + 𝜃1 for − L1 + P1 ≤ E(n) ≤ L1 + P1

0 for E(n) ≥ L1 + P1

1 for E(n) ≤ −L1 + P1

(5.8)

where EN is the segment of the membership function of EN that is linearly related

with the input, while the membership grade of the other two segments of EN is
fixed at 0 or 1. Eq. (5.8) reveals the relationship between the membership grade
and the input.

For fuzzy systems that partition the input space using IT2 FSs shown in
Figs. 5.13a and 5.13b, a commonly used rule base comprised of the following
IF–THEN statements:

• Rule 1: IF E(n) is positive AND R(n) is positive THEN Δu(n) is H1.

• Rule 2: IF E(n) is positive AND R(n) is negative THEN Δu(n) is H2.

• Rule 3: IF E(n) is negative AND R(n) is positive THEN Δu(n) is H3.

• Rule 4: IF E(n) is negative AND R(n) is negative THEN Δu(n) is H4.

where H1, H2, H3, and H4 are the four singleton consequent FSs as illustrated in
Fig. 5.14.

The result of matching the input signals to the fuzzy sets in the antecedent part
of the fuzzy rules is an IT1 set called the firing set. Using the minimum t-norm
operator, the firing sets for each rule are as follows:

R1 = [R
1
,R1] = [min(EP,RP), min(EP,RP)]

forΔu(n) = H1 (5.9)



ANALYTICAL STRUCTURE OF INTERVAL T2 FUZZY PD AND PI CONTROLLER 225

Negative Positive

EN

EN EN EP

EP

𝜇(E(n))

𝜇(R(n))

EP

E(n)

0.5+𝜃1

0.5+𝜃2

0.5−𝜃2

0.5−𝜃1

0.5

(a)

(b)

Negative Positive

R(n)

RN

RNRN

RP

RPRP

0.5

−L1−P1 −L1+P1
−L1 L1−P1 L1+P1L1

−L2−P2 −L2+P2
−L2 L2−P2 L2+P2L2

Figure 5.13 IT2 antecedent FSs: (a) IT2 FSs EN and EP for the input E(n) (P1 = 2L1𝜃1).
(b) IT2 FSs RN and RP for the input R(n) (P2 = 2L2𝜃2) (Nie and Tan, 2012; © 2012, IEEE).

H4 H3 H2 H1
ΔUj

Figure 5.14 Illustration of the singleton consequent FSs of the IT2 fuzzy PD controller
(Nie and Tan, 2012; © 2012, IEEE).

R2 = [R
2
,R2] = [min(EP,RN), min(EP,RN)]

forΔu(n) = H2 (5.10)

R3 = [R
3
,R3] = [min(EN,RP), min(EN,RP)]

forΔu(n) = H3 (5.11)
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R4 = [R
4
,R4] = [min(EN,RN), min(EN,RN)]

forΔu(n) = H4 (5.12)

Using the wavy-slice representation theorem (Chapter 2, Theorem 2.2), the IT2
FS formed by the fuzzy inference engine may be viewed as the collection of all
of its embedded IT1 FSs. Hence, the output of the inference engine may be type
reduced into an IT1 set comprising of the centroids of all embedded T1 FSs:

Δuj =
R∗

1
∗ H1 + R∗

2
∗ H2 + R∗

3
∗ H3 + R∗

4
∗ H4

R∗
1
+ R∗

2
+ R∗

3
+ R∗

4

(5.13)

where R∗
i is a value within the lower and upper bound of the firing set for the ith rule,

Ri. In summary, the type-reduced set ΔuTR(n)may be expressed mathematically as
[Δumin

j ,Δumax
j ], where Δumin

j and Δumax
j are, respectively, the smallest and largest

centroid of all the possible embedded T1 FS. Lastly, using height defuzzification,
the crisp output of the IT2 FLC is

Δu(n) =
Δumin

j + Δumax
j

2
(5.14)

As described in Chapter 2, Section 2.3.4, the upper and lower bound of the
type-reduced set,Δumin

j andΔumax
j , may be expressed as the centroids of two unique

embedded type-1 sets each of which involves only one switch between the lower
and upper MF of the IT2 fuzzy set produced by the fuzzy inference engine (Mendel,
2001). The position of each switch point depends on the values of the singleton
consequent sets. Hence, unlike a T1 fuzzy controller where the partitions of the
input space are independent of the consequent sets, there is a need for the follow-
ing assumptions in order to simplify the derivation of the analytical structure of IT2
fuzzy PD controller: (1) The rule base is symmetrical. In other words, H2 = H3. (2)
H1, H2 = H3, and H4 are equally spaced as in Fig. 5.15. The assumption H4 < H3 =
H2 < H1 is made based on the observation that the output of a linear PD controller
increases when either input signal increases.

H1H2\H3H4
ΔUj

Figure 5.15 Singleton consequent FSs of IT2 fuzzy PD controller (Nie and Tan, 2012;
© 2012, IEEE).
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5.3.2 Analysis of the Karnik–Mendel Type-Reduced IT2 Fuzzy

PD Controller3

The analytical structure of an FLCmay be established by deriving themathematical
relationship between the inputs and the output. Similar to the case of a T1 FLC, the
main concept used to determine the input–output relationship in an IT2 fuzzy PD
controller is to specify the firing strength by dividing the input space into regions
and to replace each firing strength with its corresponding mathematical expression.
This subsection discusses the strategy that will enable the derivation of analytical
expressions for the lower and upper bounds of the type reduced set, Δumin

j and

Δumax
j .
Recalling (2.66) and (2.67) in Chapter 2, the expressions for the type-reduced

sets are

cl(L) =

∑L

i=1
𝜇ixi +

∑m

i=L+1
𝜇

i
xi∑L

i=1
𝜇i +

∑m

i=L+1
𝜇

i

(5.15)

cr(R) =

∑R

i=1
𝜇

i
xi +

∑m

i=R+1
𝜇ixi∑R

i=1
𝜇

i
+

∑m

i=R+1
𝜇i

(5.16)

For the IT2 FLC described in Section 5.3.1, the type-reduced setmay be constructed
from Eqs. (5.15) and (5.16) by making the following substitutions:

𝜇i = Rj, 𝜇
i
= Rj, xi = Hj (5.17)

where Rj and Rj are the upper and lower bound of the firing set associated with
the jth rule in Eqs. (5.9)–(5.12). Furthermore, since it is assumed that H4 < H3 =
H2 < H1, Eqs. (5.15) and (5.16) may be re-expressed as

Δumin
j =

∑L−1

i=1
RiHi +

∑4

i=L
RiHi∑L−1

i=1
Ri +

∑4

i=L
Ri

(5.18)

Δumax
j =

∑R−1

i=1
RiHi +

∑4

i=R
RiHi∑R−1

i=1
Ri +

∑4

i=R
Ri

(5.19)

These expressions indicate that Δumin
j and Δumax

j may be expressed as the average
of all singleton consequents weighted by the lower or upper bound of the firing
strength and an embedded T1 FS. Once the switch points L in Eq. (5.15) and R
in Eq. (5.16) are known, then the problem of analyzing the structure of an IT2

3Much of the material is taken directly from (Nie and Tan 2012; © 2012, IEEE).
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fuzzy PD controller reduces to a T1 system that can be studied using the following
well-established techniques (Ying, 2000):

1. Partition the input space into regions by applying the minimum t-norm to the
antecedent membership functions.

2. Determine the specific expression for each firing strength, respectively, in the
corresponding subregion of each embedded T1 FLC.

The above discussion establishes that the key enabling theory for extending
analytical structure analysis from T1 to IT2 FLC is a method for identifying the
partitioning lines that correspond to a change in the switch point. In the case of
the IT2 fuzzy PD controller, the location property given in Table 2.2 shows that the
conditions for finding the switch points L and R are as follows:

HL ≤ Δumin
j < HL−1 (5.20)

HR ≤ Δumax
j < HR−1 (5.21)

Example 5.2 Consider the IT2 FLC described in Section 5.3.1. The positions of
the switch points L and R may be obtained by analyzing the inequalities in Eqs.
(5.20) and (5.21), which state the constraint that L and R must be positioned at one
of the three singleton consequent sets.

In this case, there are three unique consequent sets (H1,H2 = H3, and H4). Com-
bined with the conditions from Eqs. (5.20) and (5.21) that HL ≤ Δumin

j and HR ≤
Δumax

j , L and R can assume one of only two values, that is, HL = {H4,H2 = H3}
and HR = {H4,H2 = H3}. Consequently, the lower bound of the type-reduced set
may be computed using one of the following two equations:

Δumin
j1 =

R4 ∗ H4 + R
3
∗ H3 + R

2
∗ H2 + R

1
∗ H1

R4 + R
3
+ R

2
+ R

1

(5.22)

Δumin
j2 =

R4 ∗ H4 + R3 ∗ H3 + R2 ∗ H2 + R
1
∗ H1

R4 + R3 + R2 + R
1

(5.23)

Similarly, the upper bound of the type-reduced set may be derived using one of
the following two equations:

Δumax
j1 =

R
4
∗ H4 + R

3
∗ H3 + R

2
∗ H2 + R1 ∗ H1

R
4
+ R

3
+ R

2
+ R1

(5.24)

Δumax
j2 =

R
4
∗ H4 + R3 ∗ H3 + R2 ∗ H2 + R1 ∗ H1

R
4
+ R3 + R2 + R1

(5.25)
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The example illustrates that the only two possible expressions for the lower
bound of the type-reduced set, Δumin

j , for the IT2 FLC defined in Section 5.3.1
may be written as:

1. Mode 1: When H4 ≤ Δumin
j ≤ H2 = H3 ⇐⇒ The left switch point L coincides

with H4:

Δumin
j = Δumin

j1

=
R4 ∗ H4 + R

3
∗ H3 + R

2
∗ H2 + R

1
∗ H1

R4 + R
3
+ R

2
+ R

1

(5.26)

2. Mode 2: When H2 = H3 ≤ Δumin
j ≤ H1 ⇐⇒ The left switch point L coincides

with H2 = H3:

Δumin
j = Δumin

j2

=
R4 ∗ H4 + R3 ∗ H3 + R2 ∗ H2 + R

1
∗ H1

R4 + R3 + R2 + R
1

(5.27)

By comparing the expressions of modes 1 and 2 in Eqs. (5.26) and (5.27), their
properties can be generalized as:

1. The weight associated with H1 is always the lower bound of the firing set
for rule 1. Similarly, H4 is weighted by the upper bound of the firing set for
rule 4. Consequently, the weight on H1 and H4 is independent of the switch
points L and R.

2. In mode 1, H2 = H3 are weighted by the lower bounds R
2

and R
3
, while the

corresponding upper boundsR2 and R3 are used to weight H2 = H3 inmode 2.
The condition when the switch point changes from the position of H2 = H3

to H1 and vice versa can be established as:

Δumin
j = Δumin

j1 = Δumin
j2 = H2 = H3 (5.28)

By replacing Δumin
j1

and Δumin
j2

with their corresponding expressions in Eqs.

(5.26) and (5.27), the above equation may be written as

R4 ∗ H4 + R
3
∗ H3 + R

2
∗ H2 + R

1
∗ H1

R4 + R
3
+ R

2
+ R

1

=
R4 ∗ H4 + R3 ∗ H3 + R2 ∗ H2 + R

1
∗ H1

R4 + R3 + R2 + R
1

= H2 = H3
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⇐⇒ R4(H4 − H2) = R
1
(H2 − H1)

or R4(H4 − H3) = R
1
(H3 − H1) (5.29)

Due to the assumption that the three consequent sets are equally spaced and
H4 < H3 = H2 < H1, the condition derived above may be simplified to

R4 = R
1

(5.30)

Further, the subregions where Eq. (5.20) is used to calculate the left end point
of the type-reduced set (mode 1) should satisfy the condition

Δumin
j1 ≤ H2 = H3 ⇐⇒ R4 ≥ R

1
(5.31)

and the areas where the IT2 fuzzy PD controller operate in mode 2, that is,
the output is defined by Eq. (5.21), can be found using the following equality:

Δumin
j2 ≥ H2 = H3 ⇐⇒ R4 ≤ R

1
(5.32)

The first property shows that the firing strength of rules 1 and 4 used to calculate
Δumin

j is independent of the switch point L, and the firing strength of rules 1 and 4 is

always governed by the lower and upper bound of the firing set, that is, R
1

and R4.
Furthermore, the boundary defined by the conditions in Eqs. (5.31) and (5.32) also

depends on R
1

and R4. Based on this observation, the first step in partitioning the
input space in order to derive a closed-form firing level is performed by considering
the outcomes of the minimum t-norm operations for rules 1 and 4. Next, the relative
firing strength of rules 1 and 4 in each subspace is compared in order to determine
whether the IT2 fuzzy PD controller will operate inmodes 1 and 2. In the subregions
under modes 1 and 2, the embedded type 1 set is completely defined by Eqs. (5.26)
and (5.27) so the partitions can be found using existing technique, that is, ascer-
taining the minimum of the lower or upper bound of the firing sets. In summary, an
algorithm to derive the partitions of the input space by Δumin

j can be generalized as:

Step 1: The firing strength of rule 1 (R
1
) and rule 4 (R4) can be specified by

dividing the input space via the outcomes of the minimum t-norm oper-
ations for rules 1 and 4, that is,

R
1
= min {EP,RP} (5.33)

R4 = min {EN,RN} (5.34)

Step 2: The partitions obtained using R
1

and R4 in step 1 is further subdivided
into the following two groups, which correspond to one of the two pos-
sible operating modes:
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Mode 1: R4 > R
1

(5.35)

Mode 2: R4 < R
1

(5.36)

Step 3: To specify the firing strength of rules 2 and 3 by dividing the correspond-
ing regions for modes 1 and 2 using Eqs. (5.26) and (5.27), respectively.
Under mode 1, the firing strength of rules 2 and 3 is given by the lower
MF. Hence, partitioning can be achieved from the outcomes of the fol-
lowing minimum t-norm operations:

R
2
= min {EP,RN} (5.37)

R
3
= min {EN,RP} (5.38)

For the regions where the IT2 fuzzy PD controller is operating in
mode 2, the following minimum t-norm operations should be used to
divide the input space:

R2 = min {EP,RN} (5.39)

R3 = min {EN,RP} (5.40)

Step 4: Superimpose all the partitions obtained by considering the mode switch
and the minimum t-norm operations.

Similarly, the firing strength in the equation for deriving the right end point Δumax
j

can be specified. The procedures to derive the analytical structure of the IT2 fuzzy
PD controller can be generalized in Fig. 5.16. Applying the algorithm in Fig. 5.16,
the partitions of the input space for Δumin

j and Δumax
j were derived (Nie and Tan,

2012). Since the output of an IT2 FLC is the average of the two endpoints, superim-
posing the partitions byΔumin

j andΔumax
j yields the 35 partitions shown in Fig. 5.17,

which may be used to analyze an IT2 fuzzy PD controller. Each of the 35 partitions
correspond to unique groups of input conditions (ICs).

5.3.3 Analysis of the IT2 Fuzzy PD Controller

This section presents examples that illustrate how the ICs or partitions may be use-
ful for analyzing the characteristics of IT2 FLCs. The central idea is to obtain a
closed-form equation for the output of the IT2 FLC in a particular region by replac-
ing each firing strength in Eqs. (5.18) and (5.19) with the relevant expressions.
Properties of the IT2 fuzzy PD controller can then be analyzed using the equations.

Example 5.3 Interpreting IT2 PD FLC as Nonlinear PD Controllers
Consider the IT2 FLC defined in Section 5.3.1. For any input pairs that satisfy
IC1 and lie in partition 1 of Fig. 5.17, the switch points, L and R, correspond to
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The input space is separated into two
groups that, respectively, correspond to one

of the two possible operating modes:

The firing strength of rule
3 in the region for mode 1

can be specified as

In the other region for
mode 2, the firing strength

can be specified as

Superimpose all the partitions

The firing strength for rules 1
and 4 can be specified as

min EP, RP

min EN, RN

R1 =
R4 =

The firing strength of rule
2 in the region for mode 1

can be specified as

In the other region for
mode 2, the firing strength

can be specified as

The firing strength for rules 1
and 4 can be specified as

Step 1

Step 4

Step 3

Step 2

ΔUj
min ΔUj

max

Mode 1:

Mode 2:

R1R4 <
R1R4 >

Mode 1:

Mode 2:

R1R4 <
R1R4 >

The input space is separated into two
groups that, respectively, correspond to one

of the two possible operating modes:

The firing strength of rule
3 in the region for mode 1

can be specified as

In the other region for
mode 2, the firing strength

can be specified as

The firing strength of rule
2 in the region for mode 1

can be specified as

In the other region for
mode 2, the firing strength

can be specified as

min EN, RN
min EP, RP

R4 =
R1 =

min EN, RPR3 = min EN, RPR3 = min EP, RNR2 =min EP, RNR2 =

min EN, RPR3 = min EN, RPR3 = min EP, RNR2 =min EP, RNR2 =

.

.

.

.

.

.

.

.

Figure 5.16 Flowchart of the algorithm to derive the analytical structure of IT2 fuzzy PD
controller (Nie and Tan 2012; © 2012, IEEE).
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Figure 5.17 Partition of input space by IT2 FLC when 𝜃1 < 𝜃2 (Nie and Tan, 2012;
© 2012, IEEE).
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the locations of the consequent sets H3 = H2 and H1, respectively. Consequently,
the firing strengths in Eq. (5.18) for Δumin

j should be

R4 = R3 = EN = − 1

2L1

E(n) + 0.5 + 𝜃1 (5.41)

R2 = RN = − 1

2L2

R(n) + 0.5 + 𝜃2 (5.42)

R1 = RP = 1

2L2

R(n) + 0.5 − 𝜃2 (5.43)

Substituting the above equations into Eqs. (5.23) and (5.25), the closed-form
expression for Δumin

j and Δumax
j are as follows:

Δumin
jIC1

=
R∗

4
∗ H4 + R∗

3
∗ H3 + R∗

2
∗ H2 + R∗

1
∗ H1

R∗
4
+ R∗

3
+ R∗

2
+ R∗

1

=
EN ∗ H4 + EN ∗ H3 + RN ∗ H2 + RP ∗ H1

EN + EN + RN + RP

=

[−(1∕2L1)E(n) + 0.5 + 𝜃1](H3 + H4) + [−(1∕2L2)R(n) + 0.5 + 𝜃2]H2

+[(1∕2L2)R(n) + 0.5 − 𝜃2]H1

2[−(1∕2L1)E(n) + 0.5 + 𝜃1] + [−(1∕2L2)R(n) + 0.5 + 𝜃2]
+[(1∕2L2)R(n) + 0.5 − 𝜃2]

=
−L2(H3 + H4)E(n) + L1(H1 − H2)R(n)

4L1L2(1 + 𝜃1) − 2L2E(n)

+
L1L2[(0.5 + 𝜃1)(H3 + H4) + (0.5 − 𝜃2)H1 + (0.5 + 𝜃2)H2]

2L1L2(1 + 𝜃1) − L2E(n)
= K1

pE(n) + K1
dR(n) + 𝛿1 (5.44)

Δumax
jIC1

=
R∗

4
∗ H4 + R∗

3
∗ H3 + R∗

2
∗ H2 + R∗

1
∗ H1

R∗
4
+ R∗

3
+ R∗

2
+ R∗

1

=
EN ∗ H4 + EN ∗ H3 + RN ∗ H2 + RP ∗ H1

EN + EN + RN + RP

=

[−(1∕2L1)E(n) + 0.5 − 𝜃1](H3 + H4) + [−(1∕2L2)R(n) + 0.5 − 𝜃2]H2

+[(1∕2L2)R(n) + 0.5 + 𝜃2]H1

2[−(1∕2L1)E(n) + 0.5 − 𝜃1] + [−(1∕2L2)R(n) + 0.5 − 𝜃2]
+[(1∕2L2)R(n) + 0.5 + 𝜃2]

=
−L2(H3 + H4)E(n) + L1(H1 − H2)R(n)

4L1L2(1 − 𝜃1) − 2L2E(n)
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+
L1L2[(0.5 − 𝜃1)(H3 + H4) + (0.5 + 𝜃2)H1 + (0.5 − 𝜃2)H2]

2L1L2(1 − 𝜃1) − L2E(n)
(5.45)

Example 5.3 demonstrates that the closed-form equations for the bounds of the
type-reduced set may be expressed in terms of E(n) and R(n). Consequently, each
subregion may be interpreted as a nonlinear PI/PD controller of the following form:

ΔujICq = Kq
pE(n) + Kq

dR(n) + 𝛿q (5.46)

where ΔujICq is the output of IC q, Kq
p is the corresponding proportional gain, Kq

d
is the derivative gain, and 𝛿q is the offset. The equivalent proportional-gains
Kq

p and derivative-gains Kq
d for the 35 partitions are shown in Nie and Tan (2012)

and reproduced as Tables 5.8 and 5.9. In the next example, the analytical structure
and equivalent proportional and derivative gains will be used to investigate the
potential advantages introduced by nonequal FOU.

Example 5.4 Potential Benefits of Using Unequal FOU Assume an IT2 FLC
that has the structure described in Section 5.3.1, but with the additional constraints
that H2 = H3 = 0 and the FOU size for both the E(k) and R(k) are equal, that is, 𝜃1 =
𝜃2. By following the procedure described in Fig. 5.16, the partitions in Fig. 5.18 can
be obtained.

A comparison of Figs. 5.17 and 5.18 reveals that nonequal FOU, that is,
𝜃1 ≠ 𝜃2, introduces additional partitions that are collectively grouped as region
A in Fig. 5.17. An examination of Tables 5.8 and 5.9 reveals that the equivalent
proportional and integral gains for input pairs in region A, except for IC 17–20,
are functions of both E(n) and R(n), for example, Kp = f {E(n),R(n)}. In contrast,
the equivalent proportional and derivative gains of the IT2 FLC for the remaining
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Figure 5.18 Partition of the input space by the IT2 FLC when 𝜃1 = 𝜃2 (Nie and Tan, 2012;
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partitions are functions of either E(n) or R(n) only, that is, Kp = f {E(n)} or Kp =
f {R(n)}.

Figure 5.17 shows that partition 25 in region A is around the (E(n),R(n)) = (0, 0)
point. Since the equivalent proportional and derivative gains in region A are func-
tions of both the inputs E(n) and R(n), the use of nonequal FOU (𝜃1 ≠ 𝜃2) may
provide the potential for a smoother control surface around the zero feedback error
point. Consequently, these regions may help to eliminate the overshoot despite
greater control efforts provided by the IT2 fuzzy PD controller.

Example 5.5 Comparative Study of IT2 FLC with T1 FLC We consider the
IT2 FLC with the structure described in Section 5.3.1, but with the additional con-
ditions that the FOU sizes for both inputs are equal (𝜃1 = 𝜃2, H2 = H3 = 0 and
H4 = −H1). Due to the symmetry in the resulting IT2 fuzzy PD controller, it is suf-
ficient to compare the characteristics of the output signals of the IT2 FLC and T1
FLC in IC1 and IC27. Again using the equivalent proportional and derivative gains
tabulated in Tables 5.8 and 5.9 as well as the assumption that 𝜃1 = 𝜃2, the output
signals of the IT2 fuzzy PD controllers for input pairs in IC1 and IC27 are

ΔujIC1 =
[

H1

8L1(1 + 𝜃1) − 4E(n)
+

H1

8L1(1 − 𝜃1) − 4E(n)

]
E(n)

+
[

L1H1

8L1L2(1 + 𝜃1) − 4L2E(n)
+

L1H1

8L1L2(1 − 𝜃1) − 4L2E(n)

]
R(n) + 𝛿1

=
[

1

8L1L2(1 + 𝜃1) − 4L2E(n)

+ 1

8L1L2(1 − 𝜃1) − 4L2E(n)

]
(L1R(n) + L2E(n))H1 + 𝛿1 (5.47)

ΔujIC27 =
[

H1

8L1(1 − 𝜃1) − 4E(n)
+

H1

8L1(1 − 𝜃1) − 4E(n)

]
E(n)

+
[

L1H1

8L1L2(1 − 𝜃1) − 4L2E(n)
+

L1H1

8L1L2(1 − 𝜃1) − 4L2E(n)

]
R(n)

=
[

1

8L1L2(1 − 𝜃1) − 4L2E(n)

+ + 1

8L1L2(1 − 𝜃1) − 4L2E(n)

]
(L1R(n) + L2E(n))H1 (5.48)

The behavior of this IT2 FLC is compared with a T1 FLC with the antecedent sets
shown in Figs. 5.19a and 5.19b. The antecedent sets for the T1 FLC are constructed
by replacing every IT2 FS with a T1 FS such that both the IT2 and T1 FLC have
the same input space. By partitioning the input space into the four regions shown
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Figure 5.19 (a) T1 FSs EN and EP (solid lines) as antecedent sets for the input E(n). (b)
T1 FSs RN and RP (solid lines) as antecedent sets for the input R(n) (Nie and Tan, 2012; ©
2012, IEEE).
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Figure 5.20 Partitions of the input space by T1 FLC (Nie and Tan, 2012; © 2012, IEEE).

in Fig. 5.20 (Ying, 2000), the type 1 FLC may essentially be interpreted as four
nonlinear PD controllers with the following structural equation:

ΔuT1,jICh = khpE(n) + khdR(n) (5.49)

Itmay be observed by comparing Fig. 5.17 with Fig. 5.20 that the subregions IC1
and IC27 in the input space of IT2 fuzzy PD controller are a subset of the subregion
IC1 for its T1 counterpart. Hence, the comparative study may be performed by
using the equivalent proportional- and derivative-gains expressions (kq

p, kq
d) for the

T1 fuzzy PD controller to construct the output signal. For input pairs that satisfy
IC1, the output signal of the T1 FLC may be expressed as

ΔuT1,jIC1 =
L1(1 + 2𝜃1)R(n) + L2(1 + 2𝜃2)E(n)

4L1L2(1 + 2𝜃1)(1 + 2𝜃2) − 2L2(1 + 2𝜃2)E(n)
H1

= 1

4L1L2(1 + 2𝜃1) − 2L2E(n)
(L1R(n) + L2E(n))H1
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=
[

1

8L1L2(1 + 2𝜃1) − 4L2E(n)

+ 1

8L1L2(1 + 2𝜃1) − 4L2E(n)

]
(L1R(n) + L2E(n))H1 (5.50)

Examining the structure of Eqs. (5.47), (5.48), and (5.50) reveals that conclusions
about the relative size of the output signals for the IT2 FLC and T1 FLC depend
the following inequalities:

1

8L1L2(1 − 𝜃1) − 4L2E(n)
>

1

8L1L2(1 + 2𝜃1) − 4L2E(n)
1

8L1L2(1 + 𝜃1) − 4L2E(n)
>

1

8L1L2(1 + 2𝜃1) − 4L2E(n)

For inputs that satisfy IC1, the L1R(n) + L2E(n) term in Eqs. (5.47) and (5.50) is
positive because E(n) and R(n) are positive in IC1 while L1 and L2 are parameters
of the FOU so they must be positive. Furthermore, from Table 5.9,

𝛿1 =
L1(𝜃1 + 𝜃2)H4

4L1(1 + 𝜃1) − 2E(n)
+

L1(𝜃1 + 𝜃2)H1

4L1(1 − 𝜃1) − 2E(n)
(5.51)

As 𝜃1 = 𝜃2 and H1 > 0 (H1 is larger than H2 = H3, which is assumed to be 0),
H1L1(𝜃1 + 𝜃2) = 2H1L1𝜃1 > 0. Finally, invoking the assumption that H4 = −H1,

𝛿1 = 2H1L1𝜃1

[
1

4L1(1 − 𝜃1) − 2E(n)
− 1

4L1(1 + 𝜃1) − 2E(n)

]
> 0

Consequently, ΔujIC1 > ΔujIC1 > 0 in IC1 and their difference increases as 𝜃1

increases because 𝜃1 appears in the denominator. Likewise, L1R(n) + L2E(n) > 0
in IC27 so the magnitude of the control effort provided by IT2 fuzzy PD controller
for the same input pair is bigger. The difference in the size of the control signal
also increases as 𝜃1 = 𝜃2 increases.

The discussions in Examples 5.4 and 5.5 provide an interesting theoretical foun-
dation for explaining the characteristics of an IT2 FLC observed from the experi-
mental study in Section 5.2.5.4. The potential of an IT2 FLC to outperform a T1
FLC by providing fast rise time and small overshoot may be summarized as:

1. As demonstrated by Example 5.4, the equivalent proportional and derivative
gains in region A are functions of both the inputs E(n) and R(n). As region A
comprises the (E(n),R(n)) = (0, 0) point, this property provides the potential
for the IT2 FLC to achieve smoother surface thereby reducing the oscillation
amplitude. More importantly, the area of region A depends on the value of|𝜃1 − 𝜃2|.
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2. Example 5.5 indicates that the IT2 FLC may produce control efforts that
are larger in magnitude, compared to its T1 counterpart, for the same input
pairs. Greater control effort offers the potential to decrease the rise time. The
amount by which the control effort can be enlarged depends on the value of
the FOU.

While the above results indicate that the IT2 FLC has the potential to miti-
gate the amount of compromise between fast rise time and small overshoot, the
trade-off between these two important control performance indicators still exits.
This is because 𝜃1 and 𝜃2 need to be large for the IT2 FLC to produce bigger con-
trol efforts that result in fast rise time. However, a small overshoot requires the
size of region A to be enlarged by setting a large absolute value |𝜃1 − 𝜃2|. The two
conditions cannot be achieved simultaneously. In the last example of the chapter,
a numerical study is presented here to further illustrate the above properties of an
IT2 fuzzy PD controller gained by the analysis in the previous sections.

Example 5.6 Consider the coupled tank described in Section 5.2.5.1. The config-
urations of IT2 fuzzy PI controller and T1 fuzzy PI controller are identical to those
in Section 5.3.1 where Kr = Ke = 1,KΔU = 75. The predefined antecedent sets of
T1 fuzzy PI controller for Error (E(n)) and Rate (R(n)) are shown in Figs. 5.21a and
5.21b. The singleton consequent sets are predefined as H2 = H3 = 0,H4 = −H1.
The two parameters 𝜃Error and 𝜃Rate are defined as the distance between the upper
bound and the lower bound for every antecedent sets when 𝛼-cut is 1.

Analysis in the last subsection shows that IT2 fuzzy PD controller can out-
perform its T1 counterpart in rise time, overshoot, and disturbance rejection. To
substantiate the theoretical study, the following three cases are simulated:

1. Case 1 The parameters of IT2 fuzzy PD controller are optimized as 𝜃Error =
5, 𝜃Rate = 2, and H1 = 8 using a genetic algorithm with ITAE as the fitness
function. As shown in Fig. 5.22a, the response obtained using the IT2 FLC
has comparative rise time with the T1 case but exhibits smaller overshoot and
is less oscillatory. Figure 5.22b shows the error versus rate trajectory and the
trajectory for the IT2 FLC is much smoother when it is near Error = 0.

2. Case 2 In terms of rise time, these two FLCs are compared by choosing
H1 = 0.08. With a small H1, their difference is more obvious in rise time.
Figure 5.23a shows the step responses for case 2, while the error versus rate
trajectory is shown in Fig. 5.23b. The IT2 FLC achieves larger convergence
rate and less rise time as it can provide larger control effort than the T1 case.

3. Case 3 By keeping H1 = 8, the results for the plant with random distur-
bances are compared with those in case 1 to show their disturbance rejection
ability. As shown in Figs. 5.24a and 5.24b, more oscillation is caused by dis-
turbance in the T1 FLC while IT2 FLC exhibits similar performance with the
one in case 1.

In terms of overshoot, rise time, and disturbance rejection, the IT2 FLC can out-
perform its T1 counterpart, which is identical to the theoretical analysis in the last
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Figure 5.21 IT2 antecedent FSs: (a) antecedent sets of error and (b) antecedent sets of
rate (the dashed line for T1 FLC, the dotted line for IT2 FLC) (Nie and Tan, 2012; © 2012,
IEEE).

subsection. To find out how much the IT2 FLC can outperform its T1 case, further
study is done by gradually increasing the value of H1 and comparing the value of
their ITAE. Figure 5.25 shows that the improvement in control performance (as
measured by the ITAE) provided by the IT2 FLC over the T1 case increases as H1

increases. The increase of this rate becomes slower when H1 is increased beyond
some value. Figures 5.26 and 5.27 show the control surface of the T1 FLC and the
IT2 FLC, respectively. From the differences in the control surfaces of the T1 and
IT2 FLCs shown in Fig. 5.28, it can be observed that for most of the input pairs the
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IT2 FLC generates control efforts that are larger in magnitude, which is consistent
with property 2.

5.4 CONCLUSIONS

In this chapter, a simplified type-2 FLC, which is more suitable for real-time con-
trol, is introduced, and a type-2 FLC with simplified structure is designed for a
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Figure 5.27 Control surface produced by the IT2 FLC (H1 = 8) (Nie and Tan, 2012;
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Tan 2012; © 2012, IEEE).

coupled-tank liquid-level control process. Experimental results show that the sim-
plified type-2 FLC outperforms a T1 FLC. Analysis also indicates there will be at
least 50% reduction in computational cost if the simplified type-2 FLC is used in
place of a traditional type-2 FLC. Crucially, the experimental results indicate that
the simplified structure retains the ability to alleviate the trade-off between fast rise
time and small overshoot, which is a main characteristic of a full-fledged IT2 FLC.
To establish more general results, the analytical structure of a special class of IT2
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fuzzy PD and PI controllers that uses the KM iterative algorithm for type reduction
is presented. The theoretical structure leads to closed-form equations for the out-
put signal. Finally, examples are provided to illustrate how the derived analytical
structure may be used for theoretical quantification of the control surface in order
to establish the potential advantages of the IT2 FLC over the T1 FLC.



CHAPTER 6

On the Design of IT2 TSK FLCs

6.1 INTRODUCTION

In this chapter, we use the TSK model structure for the design of IT2 FLCs. Our
approach is based on rigorous mathematical analyses for the design of IT2 FLCs,
a development that plays a key role in this systematic design and analyses. Some
sample Matlab codes for the examples are available online on the Wiley website.
The reader is expected to have some basic knowledge about Matlab LMI or CVX
toolboxes.1

Here, we use TSK, a well-known mathematical framework for the analysis and
design of FLCs that was proposed in Japan in the 1980’s. It enables a mathemat-
ical formulation of FLCs that is very suitable for analytical design (TSK FLCs
are described in Section 3.2.3 for T1 and Section 3.3.3 for IT2). Throughout this
chapter, the TSK model structure is used for analysis and design of IT2 FLCs.

The organization of this chapter is as follows: Section 6.2 provides preliminaries
for IT2 TSK FLCs. Section 6.3 presents a new inference engine for control design,
which is used in the entire chapter. Section 6.4 presents stability analyses for IT2
TSK FLCs. Section 6.5 presents a practical approach for the design of adaptive
IT2 TSK FLCs for robot manipulators. Section 6.6 presents the design of adaptive
control with applications to robot manipulators. Section 6.7 presents robust control
design. Section 6.8 presents a summary of this chapter, and the appendix includes
proofs.

6.2 PRELIMINARIES2

We first present the rule structures for discrete and continuous T1 TSK FLCs
to familiarize the reader with these two control systems. Most of the control

1CVX is a modeling system based on Matlab for solving convex optimization problems (Grant and

Boyd, 2008, 2011).
2Much of the material in this section is taken directly from Biglarbegian et al. (2010; © 2010, IEEE).

Introduction to Type-2 Fuzzy Logic Control: Theory and Applications, First Edition.

Jerry M. Mendel, Hani Hagras, Woei-Wan Tan, William W. Melek, and Hao Ying.

© 2014 by The Institute of Electrical and Electronics Engineers, Inc. Published 2014 by John Wiley & Sons, Inc.
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development is given for discrete systems. However, since comparable results for
continuous systems can be presented, we avoid repetition and present the results
for a continuous system when applicable.

6.2.1 Discrete T1 TSK FLC: Rules and Firing Level

In this subsection, we first introduce a rule structure of a discrete T1 TSK FLC. The
sth rule, shown as Rs, is expressed as follows:

Rs: If x(k) is Fs
1

and x(k − 1) is Fs
2

and · · · and x(k − p + 1) is Fs
p , then

us = cs
1
x(k) + · · · + cspx(k − p + 1) (6.1)

where s = 1, … ,M, Fs
i represents the T1 FS of input state i in rule s, namely,

x(k − i), cs
1
, … , csp are the coefficients of the output function, us is the output of the

sth rule, and M is the number of rules. Additionally, the state vector, x, is defined as

x = [x(k), x(k − 1), … , x(k − p + 1)]T (6.2)

The firing strength of the sth rule, f s(x), is given by

f s(x) = 𝜇Fs
1
(x(k)) ∗ · · · ∗ 𝜇Fs

p
(x(k − p + 1)) (6.3)

where ∗ is a t-norm operator.

6.2.2 Continuous T1 TSK FLC: Rules and Firing Level

Similar to the discrete case, the sth rule for a continuous system can be written as
follows:

Rs: If x1(t) is Fs
1

and x2(t) is Fs
2

and · · · xp(t) is Fs
p, then

us = cs
1
x1(t) + · · · + cspxp(t) (6.4)

where xi(t) is the ith input to the controller; similar to the discrete case,
s = 1, … ,M, Fs

i represents the T1 FS of input state i in rule s, cs
1
, … , csp are the

coefficients of the output function, us is the output of the sth rule, and M is the
number of rules. Additionally, the state vector, x, is defined as

x = [x1(t), x2(t), … , xp(t)]T (6.5)

The firing strength of the sth rule, f s(x), is given as

f s(x) = 𝜇Fs
1
(x1(t)) ∗ · · · ∗ 𝜇Fs

p
(xp(t))) (6.6)
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6.2.3 T1 TSK FLC Output

The output of a T1 TSK FLC for both discrete and continuous models is given by

UT1 TSK(x) =
∑M

s=1 f s(x)us∑M
s=1 f s(x)

(6.7)

Note that to use (6.7) for a discrete system, f s(x) and us in Eqs. (6.3) and (6.1),
respectively, are required. For a continuous system, f s(x), in Eq. (6.6) and us,
expressed by Eq. (6.4), are used.

6.2.4 Discrete IT2 TSK FLC: Rules and Firing Interval

As in the T1 TSK FLC, we first introduce a rule structure of a discrete IT2 TSK
FLC. The sth rule structure of a IT2 TSK, where antecedents are IT2 FS and con-
sequents are crisp numbers, is expressed as (Mendel, 2001)

Rs: If x(k) is F̃s
1

and x(k − 1) is F̃s
2

and · · · and x(k − p + 1) is F̃s
p, then

us = cs
1
x(k) + · · · + cspx(p − k + 1) (6.8)

where s = 1, … ,M, F̃s
i represents the IT2 FS of input state i in rule s, cs

1
, … , csp

are the coefficients of the output function for rule s (and hence are crisp numbers,
i.e., type-0 FSs), us is the output of the sth rule, and M is the number of rules. The
above rules allow us to model the uncertainties encountered in the antecedents. In
an IT2 TSK model, lower and upper firing strengths of the sth rule, f s(x) and f

s
(x),

are given by

f s(x) = 𝜇
F̃s

1

(x(k)) ∗ · · · ∗ 𝜇
F̃s

p

(x(k − p + 1)) (6.9)

f
s
(x) = 𝜇F̃s

1
(x(k)) ∗ · · · ∗ 𝜇F̃s

p
(x(k − p + 1)) (6.10)

where 𝜇
F̃s

i

and 𝜇F̃s
i

represent the ith (i = 1, … , p) lower and upper membership

functions of rule s, respectively.

6.2.5 Continuous IT2 TSK FLC: Rules and Firing Interval

Similar to the discrete case, the sth rule for a continuous system is written as

Rs: If x1(t) is F̃s
1

and x2(t) is F̃s
2

and · · · and xp(t) is F̃s
p, then

us = cs
1
x1(t) + · · · + cspxp(t) (6.11)

The lower and upper firing strengths of the sth rule are given by

f s(x) = 𝜇
F̃s

1

(x1(t)) ∗ · · · ∗ 𝜇
F̃s

p

(xp(t)) (6.12)

f
s
(x) = 𝜇F̃s

1
(x1(t)) ∗ · · · ∗ 𝜇F̃s

p
(xp(t)) (6.13)
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6.2.6 IT2 TSK FLC Output

Using the KM algorithms introduced in Section 2.3.6 produces the final output of
the IT2 TSK model for both discrete and continuous models as given by (Mendel,
2001)

UTSK/A2-C0(x) = [ul(x), ur(x)] = ∫f 1∈[f 1 ,f
1
]
· · ·∫f M∈[f M ,f

M
]
1

/∑M
i=1 f s(x)us∑M

i=1 f s(x)
(6.14)

where us for the discrete model is given by the consequent portion of Eq. (6.8)
and for the continuous model is given by the consequent portion of Eq. (6.11).

The firing strengths, f s(x) and f
s
(x), for the discrete model are given by Eqs. (6.9)

and (6.10), respectively, and for the continuous model are given by Eqs. (6.12)
and (6.13).

UTSK/A2-C0 is an interval type-1 set and depends only on its left and right end
points ul,ur, which can be computed using the iterative KM algorithms, similar
to the type reduction method explained in Section 3.3.3.2. Its final output is
given as

Uoutput(x) =
ul(x) + ur(x)

2
(6.15)

The final output given by Eq. (6.15) does not have a closed-form expression, as can
be seen from Eq. (6.14).

Another method to compute Uoutput is to use WM UBs, which are fully explained
in Section 3.4. For the purpose of rigorous analysis and design of control systems, it
is required to have a closed-form expression for the controller. Doing so allows for
mathematical analyses and investigation of system properties. In addition, for real
time applications and specifically in fast dynamics, having a closed-form expres-
sion is desired.Themost adopted IT2 FLCs use KM algorithms aswell asWM UBs.
As was shown in Section 2.3.6, the KM algorithms do not provide a closed form.
WM UBs provide a closed form, yet they may not be suitable for control design
due to their complex structure. Hence, an alternative approach (Biglarbegian et al.,
2008, 2010) that parallels the WM UBs but has a simpler structure is proposed and
used for the purpose of implementing the control methodologies developed here. In
the next section, we introduce this simpler and novel inference engine for control
design.

6.3 NOVEL INFERENCE ENGINE FOR CONTROL DESIGN3

Given the need to have a closed-form solution for control design and analysis, we
introduce a new inference engine that enables us to simply express the output of any
IT2 TSK FLC. This inference engine was introduced in Biglarbegian et al. (2008,

3Much of the material in this section is taken directly from Biglarbegian et al. (2010; © 2010, IEEE).
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2010) and has been used successfully in several control applications and rigorous
analyses of IT2 TSK FLCs. This inference engine, called m–n IT2 FLC, has a sim-
ple closed-form structure, shown to be effective in analysis, design, and, real-time
implementation of IT2 FLCs. In this chapter, the m–n formula is adopted for the
the design and analyses of IT2 FLCs. The m–n inference engine is (Biglarbegian
et al., 2010)

Um−n(x) = m

∑M
s=1 f s(x)us∑M
s=1 f s(x)

+ n

∑M
s=1 f

s
(x)us∑M

s=1 f
s
(x)

(6.16)

where us is the output of each rule; for the discrete model Eq. (6.8) is used and

for the continuous model Eq. (6.11) is used; f s(x) and f
s
(x) for discrete models are

given by Eqs. (6.9) and (6.10), and for continuous models Eqs. (6.12) and (6.13),
respectively; and m and n are two free parameters that will be chosen by the designer
to satisfy the design requirements.

Um−n(x) is a simplified form of the WM UBs; as is proven in the Appendix.

6.4 STABILITY OF IT2 TSK FLCs

This section presents rigorous stability analyses of IT2 TSK FLCs. T1 TSK fuzzy
logic systems have been shown to be universal approximators (Ying, 2000) and can
model nonlinear plants (Tanaka and Sano, 1995; Wang et al., 1996). As a result, we
investigate the stability of IT2 TSK FLCs that use T1 TSK for modeling plants
to reduce the complexity of the final stability conditions of IT2 TSK FLCs. We
develop the stability analysis for a discrete model, using a similar approach and
then present the stability analysis for continuous models.

6.4.1 Stability of Discrete IT2 TSK FLC

First, the structure of a discrete T1 TSK FLC (where T1 TSK is used in the struc-
tures of both plant and controller) is reviewed. Next, the T1 TSK FLC is replaced
with a discrete IT2 TSK FLC.

6.4.1.1 T1 TSK FLC The general sth rule for the plant, Rs
Q, can be expressed

as (Tanaka and Sano, 1994)

Rs
Q: If x(k) is Qs

1
and · · · and x(k − p + 1) is Qs

p, then

xs(k + 1) = Asx + bsu(k), s = 1, 2, … , r (6.17)

where As ∈ ℝn×n, bs ∈ ℝn×m, u(k) ∈ ℝm (controller output), and Qs
i represents a

T1 FS of the ith input state of rule s, xs(k + 1) is the output of each rule, x is the state
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vector given by Eq. (6.2), and r is the number of rules. The output of the system,
x(k + 1), which is the weighted average of each rule is given by

x(k + 1) =
∑r

s=1 f s(x){Asx + bsu(k)}∑r
s=1 f s(x)

(6.18)

in which f s(x) is calculated using Eq. (6.3) where Qs
1
,Qs

2
, … ,Qs

p should be used
as antecedents.

The sth control rule, Rs
c, is (Tanaka and Sano, 1995)

Rs
c: If x(k) is Cs

1
and · · · and x(k − p + 1) is Cs

p, then

us(k) = Fsx, s = 1, 2, … , r (6.19)

and Fs is the sth feedback gain matrix, and Cs
i represents the T1 FS of input state

i of rule s. Assuming the number of the rules for the controller is r, u(k), is thus
given by (Tanaka and Sano, 1995)

u(k) =
∑r

s=1 f s(x)Fsx∑r
s=1 f s(x)

(6.20)

To calculate f s(x) use Eq. (6.3) in which Cs
1
,Cs

2
, … ,Cs

p should be used as
antecedents. To obtain a closed loop of T1 TSK FLC, one needs to substitute Eq.
(6.20) into (6.18). Now, we review the framework of IT2 TSK FLC.

6.4.1.2 IT2 TSK FLC To develop IT2 TSK FLC, we replace Cs
i with their IT2

FS counterparts, expressed as C̃s
i . Thus, u(k), for the IT2 TSK FLC is now given

by

u(k) = mc

∑r
s=1 f s(x)Fsx∑r
s=1 f s(x)

+ nc

∑r
s=1 f

s
(x)Fsx∑r

s=1 f
s
(x)

(6.21)

where mc and nc are controller tuning parameters; and, f s(x) and f
s
(x) are given by

Eqs. (6.9) and (6.10), respectively.
By substituting Eq. (6.21) into (6.18), x(k + 1) can be expressed as

x(k + 1) =
∑r

i,j,l=1 gijlGijl∑r
i,j,l=1 gijl

x (6.22)

where

gijl = f i(x)f j(x)f
l
(x) (6.23)

Gijl = Ai + mcbiFj + ncbiFl (6.24)
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In the following we show the properties of
∑r

i,j,l=1 Gijl that help us obtain easier

stability conditions.
∑r

i,j,l=1 Gijl can be most clearly expressed as

r∑
i,j,l=1

Gijl =
r∑

i=1

Giii +
r∑

i≠j

r∑
j=1

Gijj +
r∑

i=1

r∑
j≠l

r∑
l=1

Gijl (6.25)

as well as

r∑
i≠j

r∑
j=1

Gijj =
r∑

i<j

r∑
j=1

Gijj +
r∑

i>j

r∑
j=1

Gijj

=
r∑

i<j

r∑
j=1

Gijj +
r∑

t<p

r∑
t=1

Gptt = 2

r∑
i<j

r∑
j=1

[Gijj + Gjii

2

]
(6.26)

and

r∑
i=1

r∑
j≠l

r∑
l=1

Gijl =
r∑

i=1

r∑
j<l

r∑
l=1

Gijl +
r∑

i=1

r∑
j>l

r∑
l=1

Gijl

=
r∑

i=1

r∑
j<l

r∑
l=1

Gijl +
r∑

i=1

r∑
p>t

r∑
l=1

Gipt

=
r∑

i=1

r∑
j<l

r∑
l=1

Gijl +
r∑

i=1

r∑
l>j

r∑
l=1

Gilj

= 2

r∑
i=1

r∑
j<l

r∑
l=1

[Gijl + Gilj

2

]
(6.27)

Next, we define Ht and vt, respectively, as

Ht ≡

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Gijl + Gilj

2
t = i + r

(
j − 1 + (l − 1)(l − 2)

2

)
and j < l

Gijj + Gjii

2
t = i +

j(j − 1)
2

+ r2(r − 1)
2

and j = l, i < j

Giii t = i + i(i − 1)
2

+ r2(r − 1)
2

and i = j = l

(6.28)

vt ≡

⎧⎪⎪⎪⎨⎪⎪⎪⎩

2gijl t = i + r(j − 1 + (l − 1)(l − 2)
2

) and j < l

2gijj t = i +
j(j − 1)

2
+ r2(r − 1)

2
and j = l, i < j

giii t = i + i(i − 1)
2

+ r2(r − 1)
2

and i = j = l

(6.29)
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The number of Ht matrices given in Eq. (6.28) is
r(r2+1)

2
. Thus, Eq. (6.22) can be

expressed in a compact form as

x(k + 1) =
∑[r(r2+1)]∕2

t=1
𝑣tHt∑[r(r2+1)]∕2

t=1
𝑣t

x (6.30)

The sufficient condition for system (6.30) to be globally asymptotically stable
is that a common positive-definite matrix P exists such that (Wang et al., 1996)

HT
t PHt − P < 𝟎 (6.31)

where t = 1, 2, … , [r(r2 + 1)]∕2 linear matrix inequalities (LMIs) in Eq. (6.31) are
the final stability conditions of the discrete IT2 TSK FLC. To ensure closed-loop
system stability, one can verify the feasibility of those LMIs using the Matlab LMI
toolbox or the CVX. Therefore, if a positive-definite P exists satisfying Eq. (6.31)
for t = 1, 2, … , [r(r2 + 1)]∕2, then the closed-loop system will be asymptotically
stable.

Note that without using the properties of
∑r

i,j,l=1 Gijl (shown earlier), the number

of LMIs that need to be checked is r3, but by using the properties of
∑r

i,j,l=1 Gijl, the

number of LMIs to be satisfied becomes [r(r2 + 1)]∕2, which is fewer than r3, that
is, [r(r2 + 1)]∕2 < r3.

6.4.2 Stability of Continuous IT2 TSK FLC

Similar to the discrete case, we use T1 TSK and IT2 FLC to model continuous
plant and controller, respectively. The rule structure for the continuous model is
expressed as follows:

The sth rule for the plant, Rs
Q, can be expressed as (Wang et al., 1996)

Rs
Q: If x1(t) is Qs

1
and · · · and xp(t) is Qs

p , then

ẋs(t) = Asx + bsu(t), s = 1, 2, · · · , r (6.32)

where As ∈ ℝn×n, bs ∈ ℝn×m, u ∈ ℝm (controller output), and Qs
i represents a T1

FS of the ith input state of rule s, ẋs(t) is the output of each rule, x is the state vector
given by Eq. (6.5), and r is the number of rules. We use Eq. (6.21) as the controller
output. Substituting Eq. (6.21) into (6.32) and using the weighted average of all the
rules to find the total output, ẋ, yields

ẋ =
∑r

i,j,l=1gijlGijl∑r
i,j,l=1gijl

x (6.33)
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For stability of continuous models, very similar methodology can be used. As
was shown earlier for the discrete case, we can show Eq. (6.33) to be expressed as

ẋ =
∑[r(r2+1)]∕2

t=1
𝑣tHt∑[r(r2+1)]∕2

t=1
𝑣t

x (6.34)

Note that ẋ is the derivative of the state vector given by Eq. (6.5). Also observe the
similarity of discrete Eq. (6.30) and continuous Eq. (6.34) dynamics. It was shown
in Wang et al. (1996) that the sufficient conditions for the stability of (6.34) are

HT
t P + PH < 𝟎 (6.35)

where t = 1, 2, … , [r(r2 + 1)]∕2. To ensure closed-loop system stability of the
continuous IT2 TSK FLC, we have to solve the LMIs given by Eq. (6.35) for
t = 1, 2, … , [r(r2 + 1)]∕2. If a positive-definite P exists that satisfies all the LMIs
in Eq. (6.35), then the closed-loop system will be asymptotically stable. The fea-
sibility of those LMIs can be verified using the Matlab LMI toolbox or the CVX
(similar to the discrete case).

6.4.3 Examples

Example 6.1 Car parking (the code for this example can be found online on
the Wiley website of the textbook) This example presents the control design for
the problem of parking a car and was adopted from Biglarbegian et al. (2010).
The control problem is steering the car from a starting point to a final position
(destination) without backward movement. The position and orientation of the car
with respect to the coordinate frame is shown in Fig. 6.1, where x0 is the yaw angle
and x1 is the vertical position of the car rear side. The control design problem is to
steer the car from an initial position to the parking position at x0 = x1 = 0.

As discussed earlier, for the plant (car) a T1 TS model was used. We now
redesign and replace the controller with a IT2 TSK FLC. The membership
functions for modeling the plant and the controller are shown in Fig. 6.2.

x1

x0

Car
Front

Figure 6.1 Robot position and orientation (Biglarbegian et al. 2010; © 2010, IEEE).
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Figure 6.2 Membership functions (Biglarbegian et al., 2010; © 2010, IEEE).

The state vector, x(k), is defined as

x(k) ≡ [x0(k), x1(k)]T (6.36)

As was shown in Tanaka and Sano (1995), to obtain an approximate T1 model
of the plant (car), the dynamics of the car can be simplified around 0 and ±𝜋 angles.
Thus, the expressions such as about “0” and “about ±𝜋” are used in the definition
of the membership functions to model the plant and the controller for this example.
Thesemembership functions are given as follows (Biglarbegian et al., 2010;Tanaka
and Sano, 1995):

Plant4

Rule 1: If x0(k) is “about 0,” then x(k + 1) = A1x(k) + b1u(k).
Rule 2: If x0(k) is “about 𝜋 or −𝜋,” then x(k + 1) = A2x(k) + b2u(k).

Control

Rule 1: If x0(k) is “about 0̃,” then u(k) = f 1x(k).
Rule 2: If x0(k) is “about 𝜋̃ or −𝜋̃,” then u(k) = f 2x(k).

4x0 is given in radians.
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The numerical values of the plant and controllers are as follows:

A1 =

[
1 0

1 1

]
A2 =

[
1 0

0.003183 1

]
(6.37)

b1 =

[
0.357143

1

]
b2 =

[
0.357143

1

]
(6.38)

f 1 =
[
−0.4212 −0.02933

]
f 2 =

[
−0.0991 −0.00967

]
(6.39)

We choose m = 3.2 and n = −2.2. Since the number of the rules is 2, the number of
required LMIs to be satisfied for stability is 5. We can now compute theHi matrices
according to Eq. (6.28).

H1 =

[
0.8495 −0.0105

1 1

]
H2 =

[
0.9071 −0.0070

1 1

]

H3 =

[
0.9071 −0.0070

0.5016 1

]
H4 =

[
0.9071 −0.0070

0.0032 1

]

H5 =

[
0.9646 −0.0035

1 1

]
(6.40)

Using Matlab LMI toolbox, matrix P is thus given as

P =

[
699.6386 57.3766

57.3766 11.7997

]
(6.41)

It is easy to verify that P satisfies the stability conditions. Details are as follows:

HT
1PH1 − P =

[
−85.369 −3.659

−3.659 −1.125

]
< 𝟎,

HT
2PH2 − P =

[
−8.077 1.650

1.650 −0.765

]
< 𝟎

HT
3PH3 − P =

[
−68.788 −4.033

−4.033 −0.765

]
< 𝟎,

HT
4PH4 − P =

[
−123.637 −9.714

−9.714 −0.765

]
< 𝟎

HT
5PH5 − P =

[
−48.296 −4.325

−4.325 −0.3880

]
< 𝟎 (6.42)

Therefore, the system is asymptotically stable.
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Example 6.2 Control of a Chaotic System (the code for this example can be
found online on the Wiley website of the textbook) In this example, adopted
from Biglarbegian et al. (2010), we develop a IT2 TSK FLC and apply it to a non-
linear plant with chaotic behavior. The plant considered in this example is known as
Chua’s electric circuit (Chua et al., 1986). The Chua circuit consists of one induc-
tor (L), two capacitors (C1,C2), one linear resistor (R), and one piecewise linear
resistor [g(𝑣c1)] and can be modeled as follows (Biglarbegian et al., 2010; Wang
and Tanaka, 1996):

𝑣̇c1 =
1

C1

[
1

R
(𝑣c2 − 𝑣c1) − g(𝑣c1)

]
+ u1 (6.43)

𝑣̇c2 =
1

C2

[
1

R
(𝑣c1 − 𝑣c2) + iL

]
+ u2 (6.44)

i̇L = 1

L
(−𝑣c2 − R0iL) + u3 (6.45)

where g(𝑣c1) is given by

g(𝑣c1) =
⎧⎪⎨⎪⎩

Gb𝑣c1 + (Ga − Gb)E 𝑣c1 ≥ E

Ga𝑣c1 −E < 𝑣c1 < E

Gb𝑣c1 − (Ga − Gb)E 𝑣c1 ≤ −E

(6.46)

and 𝑣c1, 𝑣c2, iL are state variables, Ga,Gb,E represent the characteristics of the
resistor, and u1, u2, u3 are the controls; see Chua et al. (1986, 1993) for more
information.

First, we designate the state vector x(t) ≡ [x1(t), x2(t), x3(t)]T where x1 = 𝑣c1,
x2 = 𝑣c2, x3 = iL. The values for the parameters used in this example are
R = 1.4286, R0 = 0Ω, C1 = 0.1, C2 = 0.2, L = 0.1429, Ga = −2, Gb = 0.1, and
E = 1. The next step is to identify the membership functions that are shown in
Fig. 6.3.

The plant and control rules are as follows:

Plant Rules
Rule 1: If x1(t) is M1, then ẋ = A1x(t) + bu(t).
Rule 2: If x1(t) is M2, then ẋ = A2x(t) + bu(t).

Control Rules
Control Rule 1: If x1(t) is M̃1, then u(t) = F1x(t).
Control Rule 2: If x1(t) is M̃2, then u(t) = F2x(t).
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Figure 6.3 Membership functions (Biglarbegian et al., 2010; © 2009, IEEE).

where

A1 =
⎡⎢⎢⎣
5.7143 14.2857 0
0.7143 −0.7143 0.5

0 −7 0

⎤⎥⎥⎦ A2 =
⎡⎢⎢⎣
−12.0190 14.2857 0

0.7143 −0.7143 0.5
0 −7 0

⎤⎥⎥⎦ (6.47)

F1 =
⎡⎢⎢⎣
−33.3333 −31.6202 −1.7961

24.2702 0.0167 −1.9808
1.7961 8.4808 −0.3333

⎤⎥⎥⎦
F2 =

⎡⎢⎢⎣
3.0667 21.4379 −3.7158

−28.7879 0.0167 −20.2722
3.7158 26.7722 −0.3333

⎤⎥⎥⎦ (6.48)

and b is a 3 × 3 identity matrix. Choose m = n = 0.8 and solve for the LMIs given
in Eq. (6.35). The common P matrix that satisfies those LMIs is given as

P =
⎡⎢⎢⎣
2.2240 0.0112 0.1701
0.0112 2.5747 −0.0198
0.1701 −0.0198 2.0743

⎤⎥⎥⎦ (6.49)

Since the LMIs are feasible, there is a positive-definite matrix that satisfies
Eq. (6.35), the closed-loop system stability is guaranteed. It is also easy to verify
that P satisfies the stability conditions. Details are as follows:

HT
1P + PH1 =

⎡⎢⎢⎣
−80.8608 9.3356 −4.0332

9.3356 −4.2432 0.4534
−4.0332 0.4534 −3.0280

⎤⎥⎥⎦ < 𝟎
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HT
2P + PH2 =

⎡⎢⎢⎣
−159.740 9.137 −7.050

9.137 −4.243 0.453
−7.050 0.453 −3.028

⎤⎥⎥⎦ < 𝟎

HT
3P + PH3 =

⎡⎢⎢⎣
−209.974 21.278 −9.433

21.278 −4.612 0.570
−9.433 0.570 −3.085

⎤⎥⎥⎦ < 𝟎

HT
4P + PH4 =

⎡⎢⎢⎣
−120.300 9.236 −5.542

9.237 −4.243 0.453
−5.541 0.453 −3.028

⎤⎥⎥⎦ < 𝟎

HT
5P + PH5 =

⎡⎢⎢⎣
−30.626 −2.805 −1.650
−2.805 −3.874 0.337
−1.650 0.337 −2.971

⎤⎥⎥⎦ < 𝟎 (6.50)

Therefore, the system is asymptotically stable.

6.5 DESIGN OF ADAPTIVE IT2 TSK FLC5

This section presents a methodology for the design of adaptive IT2 TSK FLC with
application to robot manipulators. The structure of the proposed adaptive FLC
depends on the PD FLC. First, we identify the structure of the PD FLC, present-
ing the membership functions, rules, and inference mechanism, in the subsections.
Then, we use these for the design of the adaptive FLC.

6.5.1 Rule Bases

Rules play a key role in any FLC and obtaining effective rule bases is very impor-
tant. Designers usually use their expertise or their intuition to develop rules, or they
refer to some well-known rule bases, which is our choice in this section. We adopt
the MacVicar–Whelan rule base for our design as it has been shown to be effective
for tracking (Yager and Filev, 1994).

First, error, e, and the rate of change of the error, Δe, are defined as

e ≡ r − y (6.51)

Δe ≡ e(k) − e((k − 1)) (6.52)

where r is the set point, y is the output, and k is an integer. We define the error
vector, e, as

e = [e,Δe]T (6.53)

5Much of the material in this section is taken directly from Biglarbegian et al. (2009; © 2009, IEEE).
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For the PD-type FLC, the rules are defined as follows:

Rs: If e is F̃s
1

and Δe is F̃s
2
, then us = cs

1
e + cs

2
Δe (6.54)

where s = 1, … ,M, F̃s
i represents the IT2 fuzzy set of input state i of rule s, cs

1
and

cs
2

are the coefficients of the output function for rule s (and are crisp numbers), us
is the output of the controller, with M the number of rules.

Lower firing level, f s, and upper firing level, f
s
, are given as follows:

f s(e) = 𝜇
F̃s

1

(e1) ∗ 𝜇
F̃s

2

(Δe) (6.55)

f
s
(e) = 𝜇F̃s

1
(e1) ∗ 𝜇F̃s

2
(Δe) (6.56)

where𝜇
F̃s

i

and𝜇F̃s
i
represent the ith (i = 1, 2) lower and uppermembership functions

of rule s, respectively, and ∗ is a t-norm operator.
To determine the control action, u, a general MacVicar–Whelan rule base

(Chopra et al., 2005) uses e and Δe. Although different rule bases can be defined,
we present a system with only nine rules.

The nine-rule system is introduced inTable 6.1 where NB,ZE, and PB, represent
negative big, zero, and positive big, respectively.

6.5.2 Membership Functions

Figures 6.4 shows some suggested membership functions for systems with nine
rules.

The inputs to the membership functions shown above are within [−1, 1]. Hence,
the values of e and Δe must be mapped onto [−1, 1], which is done using scaling
factors and introduced next.

6.5.3 Control Structure

The structure of the PD FLCs is shown in Fig. 6.5 where r is the input, y is the
output to the closed loop, and e is the difference between the two. The inputs to the
PD are en and Δen, and the corresponding output is u. Scaling factors are 𝛼e and
𝛼Δe map e and Δe onto [−1, 1], use the following relationships:

en = 𝛾e.e (6.57)

Δen = 𝛾Δe.Δe (6.58)

TABLE 6.1 Rule Base for System with Nine Rules

Δe∕e NB ZE PB

NB NB NB ZE
ZE NB ZE PB
PB ZE PB PB
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Figure 6.4 Membership functions for e andΔe of the proposed IT2TSK FLCs for a system
with nine rules (Biglarbegian et al., 2009; © 2009, IEEE).

u y

en

Δen

e

Δe

r +

− y

γe

γΔe

Interval
Type-2

Fuzzy controller
Plant

z−1

Figure 6.5 Structure of the IT2 PD FLCs (Bigalarbegian et al., 2009; © 2009, IEEE).

With the inference engine introduced earlier, the controller output, is given by
the following expression:

u = m

∑M
s=1f s(e)us∑M
s=1f s(e)

+ n

∑M
s=1f

s
(e)us∑M

s=1f
s
(e)

(6.59)

6.5.4 Control Design

The next step is to determine the control parameters. There are a multitude of
methods to find the consequent parameters of the IT2 TSK FLCs. To determine
how to find the consequent parameters, the nine rules of Table 6.1 must first be
considered:
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If e is NB (e = −1), then

Rule 1. If Δe is NB, Δe = −1: u1 = −c1
1
− c1

2
= −1.

Rule 2. If Δe is ZE, Δe = 0: u2 = −c2
1
= −1.

Rule 3. If Δe is PB, Δe = 1: u3 = −c3
1
+ c3

2
= 0.

If en is ZE (en = 0), then

Rule 4. If Δen is NB, Δen = −1: u4 = −c4
2
= −1.

Rule 5. If Δen is ZE, Δen = 0: u5 = 0.

Rule 6. If Δen is PB, Δen = 1: u6 = c6
2
= 1.

If e is PB (e = 1), then

Rule 7. If Δe is NB, Δe = −1: u7 = c7
1
− c7

2
= 0.

Rule 8. If Δe is ZE, Δe = 0: u8 = c8
1
= 1.

Rule 9. If Δe is PB, Δe = 1: u9 = c9
1
+ c9

2
= 1.

From the above conditions we can solve for ci
1

and ci
2
, to find the consequent

parameters. These constraints do not determine all the parameters, and we impose
a condition on them so that they belong to [0, 1]. Depending on the design require-
ment, the designer can choose the free variables.

To tune the control parameters m, n, 𝛼e, the following steps are recommended:

• To tune 𝛼e, en is required to fall into [−1, 1]. Tuning 𝛼Δe requires trial and
error to achieve good transient response.

• To tune the parameters of the controller, m and n, it is best to start with
small gains because high gains result in overshoot and even instability,
that is, 0 < m, n <= 1. If the design aspects are not met, start increasing m
and/or n.

6.5.5 Control Performance

In this section, we use some standard metrics to compare the output of a PD-type
IT2 TSK FLC on a nonlinear plant. These metrics are rise time, tr, settling time,
ts, percent overshoot, OS, steady-state output, yss, and steady-state error, ess. The
following plant is used for our investigation:

ẏ(t) = u(t) − y(t) − 0.8y2(t) (6.60)

We develop IT2 as well as T1 FLC and compare their outputs. Simulations were
performed in Simulink.
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Figure 6.6 Step response of T1 and IT2 FLCs (Biglarbegian et al., 2009; © 2009, IEEE).

TABLE 6.2 T1 and IT2 FLCs Performance

tr(s) ts(s) OS yss ess

T1 0.227 0.249 0 0.856 0.144
IT2 0.110 0.139 0 0.920 0.080

6.5.5.1 PD FLC The results of the T1 and IT2 FLCs are shown in Fig. 6.6
where both controllers have output-tracking errors. However, the IT2 controller
outperforms its T1 counterpart by providing a significantly faster response as well
as reducing steady-state error. The transient response characteristics of both con-
trollers are shown in Table 6.2, which verifies the enhanced performance of the IT2
controller. The values of m and n were chosen as 1.5 and 0.5, respectively; 𝛾e and
𝛾Δe are selected to be 10 and 1.

6.6 ADAPTIVE CONTROL DESIGN WITH APPLICATION TO ROBOT

MANIPULATORS6

In this section, we design adaptive IT2 TSK FLCs for modular and reconfigurable
robots (MRR). These manipulators assume multiple configurations and thus can be
used in several tasks. Because of the flexibility these manipulators offer, they are
popular tools in automation industry for creating cost-effective solutions.

6Much of the material in this section is taken directly from Biglarbegian et al. (2011; © 2011, IEEE).
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We first present the governing equations of motion for these manipulators. Then,
we design controllers for a trajectory tracking problem, and finally present some
experimental results. The dynamics of robot manipulators with p joints is given by
Lewis et al. (1995) as

M(q)q̈ + Vm(q, q̇)q̇ + F(q̇) + G(q) + 𝛕d = 𝛕 (6.61)

where M(q) is the inertia matrix, Vm(q, q̇) contains the Coriolis terms, and F(q̇),
G(q), 𝛕d represent friction, gravity, disturbances, respectively,where 𝛕 is the control
variable, and, finally, q is the robot joint parameter.

The following properties that hold for manipulators are (Lewis et al., 1999):

• M(q) is symmetric, positive-definite matrix and bounded from above, that is,‖M(q)‖ ≤ MB.

• ‖Vm(q, q̇)‖ < VB‖q̇‖.

• M(q) − 2Vm(q, q̇), is skew-symmetric.

• ‖F(q̇)‖ ≤ FB‖q̇‖ + KB and ‖G(q)‖ ≤ GB .

• The bound on disturbances are known, that is, ‖𝛕d‖ ≤ DB.

We use these properties for control design.

6.6.1 Tracking Control

In tracking, we require each joint of the robot to follow a desired trajectory. The
control objective is to minimize the error as a result of varying dynamics and
disturbances.

Define the tracking error, e, and filtered tracking error, r, as

e ≡ qd − q (6.62)

r ≡ ė + 𝚲e (6.63)

where 𝚲 ∈ ℝp×p is a positive-definite design matrix.
We now solve for q from Eq. (6.62) and ė from Eq. (6.63):

q = qd − e (6.64)

ė = r − 𝚲e (6.65)

First and second derivatives of Eq. (6.64) as well as the first derivative of
Eq. (6.65) are given as follows, respectively:

q̇ = q̇d − ė (6.66)

q̈ = q̈d − ë (6.67)

ë = ṙ − 𝚲ė (6.68)
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Substituting ė in Eq. (6.65) into Eq. (6.66) gives

q̇ = q̇d − r + 𝚲e (6.69)

Similarly, substituting ë in Eq. (6.68) into Eq. (6.67) gives

q̈ = q̈d − ṙ + 𝚲ė (6.70)

Using Eqs. (6.69) and (6.70), the dynamics of the robot [Eq. (6.61)] can be writ-
ten as7

Mṙ =M[q̈d+𝚲ė] + Vm[q̇d+𝚲e] − Vmr + F(q̇) + G(q) + 𝛕d − 𝛕 (6.71)

Absorbing the first, second, fourth, and fifth terms of the right hand of Eq. (6.71)
into f , we will have

f = M[q̈d+𝚲ė] + Vm[q̇d+𝚲e] + F(q̇) + G(q) (6.72)

Using the expression for f given in Eq. (6.72), the dynamics of the robot is
expressed in a more compact form as follows:

Mṙ = −Vmr + f + 𝛕d − 𝛕 (6.73)

where f has nonlinearity and unmodeled dynamics. For reconfigurable robots,
the dynamic parameters will change when a robot arm is reconfigured; therefore,
developing adaptive control techniques that are robust is necessary to handle these
changing dynamics.

6.6.2 Control Structure

The structure of the IT2 TSK FLC is shown in Fig. 6.7, where qd is the reference
trajectory, q̇d is the derivative of the reference trajectory, q is the MRR output, ue is
the auxiliary output (which will be explained later), uFuzzy is the IT2 FLC output,
uPD is the PD controller output, and e and ė are the error and error rate, respectively.

The proposed controller has the following form:

𝛕 = uPD + uFuzzy + ue (6.74)

where uPD = KPDr, and uFuzzy = g(e, ė), and ue is the auxiliary control (which
will be explained in detail later).

7M and Vm are short for M(q) and Vm(q, q̇), respectively.
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Figure 6.7 Control structure (Biglarbegian et al., 2011; © 2011, IEEE).

We now define the following terms that enable us to express the IT2 FLC in a
matrix format for control design:

𝝓 ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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(
f 1

1∑M
i=1 f i

1

)
e1 · · · m1

(
f M

1∑M
i=1 f i

1

)
e1 m1

(
f 1

1∑M
i=1 f i

1

)
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ė2 · · · m2

(
f M

2∑M
i=1

f i
2

)
ė2
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and

𝝓 ≡
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as well,

X ≡ (𝝓 + 𝝓) (6.75)
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and 𝚯 contains the consequent TSK parameters

𝚯 ≡ [
c1

1
, … , cM

1
, c1

2
, … , cM

2

]T
(6.76)

Using Eqs. (6.75) and (6.76), the IT2 TSK FLC output is simply written as

uFuzzy = g(e, ė) = XΘ (6.77)

As we will see later in the design, the compact form of the FLC output given by
Eq. (6.77) helps to develop the adaptive controller.

Using Eqs. (6.62) and (6.77), the dynamics of the robot are given as

Mṙ = −Vmr − KPDr − XΘ − ue + f + 𝛕d (6.78)

We assume the desired trajectory and its derivatives are bounded, that is, ‖qd‖ ≤
qd, ‖q̇d‖ ≤ q̇d, and ‖q̈d‖ ≤ q̇d and use this assumption in the next step for control
design.

We now state an important theorem that is used to prove the stability of the
controller, from which we will derive the adaptive law as well.

THEOREM 6.1 If for a nonlinear system ẋ = f (x) + d(t), there exists a Lyapunov
function V(x, t) with continuous partial derivatives such that for x in a compact set
S ⊂ ℝn

V(x, t) > 0 (6.79)

and
V̇(x, t) < 0 for ‖x‖ > R (6.80)

for some R > 0 such that the ball of radius of R is contained in S, then the system
is uniformly ultimately bounded (UUB), and the norm of the state is bounded to
within a neighborhood of R (Lewis et al., 1999).

Therefore, we need to find a Lyapunov function and show V̇ < 0 along the robot
trajectories. Considering the following Lyapunov function

V = 1

2
rTMr + ∫

t

0

𝚯TFΘ dt (6.81)

V̇ is expressed as

V̇ = rTMṙ + 1

2
rTṀr +𝚯TFΘ (6.82)

Using (6.78), V̇ can be written simply as

V̇ = 1

2
rT (Ṁ − 2Vm)r −𝚯T (XTr − FΘ) − rTKPDr + rT𝝓 (6.83)
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where 𝝓 is given by

𝝓 ≡ M[q̈d+𝚲ė] + F(q̇) + G(q) + Vm[q̇d+𝚲e] − ue + 𝛕d (6.84)

Assume a function approximator, termed ue, exists that can approximate
Vm[q̇d+𝚲e]. This approximator is the auxiliary control that was defined in
Eq. (6.74).

As well, define

𝛜 ≡ Vm[q̇d+𝚲e] − ue (6.85)

where ||𝛜|| ≤ 𝜖n. We make use of this definition in the following analysis.
Since rT𝝓 ≤ ||𝜙||.||r||, we will have

rT𝝓 ≤ ‖M[q̈d+𝚲ė] + F(q̇) + G(q) + 𝛜 + 𝛕d‖.||r|| (6.86)

The upper bound on ‖𝝓‖ is calculated as

‖𝝓‖ ≤ ‖M[q̈d+𝚲ė]‖ + ‖F(q̇)‖ + ‖G(q)‖ + ‖𝛕d‖
≤ ‖Mq̈d‖ + ‖MΛė‖ + ‖F(q̇)‖ + ‖G(q)‖ + ‖𝛜‖ + ‖𝛕d‖ (6.87)

Using the upper bounds of the robot parameters, as well as boundedness of the
desired trajectory and its derivatives, we have

‖𝝓‖ ≤ MBq̈d + MB max(eig(𝚲))‖r‖ + FB(q̇d + ‖r‖) + KB + GB + DB + 𝜖N (6.88)

Similarly, the bound of −rTKPDr + rT𝝓, is given by

−rTKPDr + rT𝝓 ≤ −KPDmin‖r‖2 + ‖𝝓‖‖r‖
≤ −KPDmin‖r‖2 + MBq̈d‖r‖ + MB max(eig(𝚲))‖r‖2

+ FB(q̇d + ‖r‖)‖r‖ + (KB + GB + DB + 𝜖N)‖r‖ (6.89)

where we have used the following well-known concept from linear algebra (Khalil,
1996): ||x||2 min(eig(P)) ≤ xTPx ≤ ||x||2 max(eig(P)) (6.90)

in which KPDmin is the minimum eigenvalue of the matrix KPD.
Equation (6.89) can be written as

−rTKPDr + rT𝝓 ≤ (A‖r‖ + B)‖r‖ (6.91)
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where A and B are given as follows:

A = −KPDmin + MB max(eig(𝚲)) + FB (6.92)

B = MBq̈d + FBq̇d + (KB + GB + DB + 𝜖N) (6.93)

Observe that Ṁ − 2Vm, is a skew-symmetric matrix (characteristics of robot
manipulators). Hence, Eq. (6.94) is written in a more simplified way as

V̇ = −𝚯T (XTr − FΘ) − rTKPDr + rT𝝓 (6.94)

If we ensure the following,

−rTKPDr + rT𝝓 < 0 (6.95)

XTr − FΘ = 𝟎 (6.96)

then V̇ in Eq. (6.94) will be negative definite.
First, if (A‖r‖ + B)‖r‖ < 0, then −rTKPDr + rT𝝓 < 0.

Thus
A‖r‖ + B < 0 (6.97)

By making A < 0 and knowing that B is a positive constant, for ∀‖r‖> − B∕A, it is
guaranteed to have −rTKPDr + rT𝝓 < 0.

The next condition to satisfy is called the “adaptive law,”XTr − FΘ = 𝟎 and can
be expressed as

𝚯 = F−1XTr (6.98)

where F is a design matrix (needs to be positive definite), X contains the control
parameters, and r is the tracking error.

To satisfy Eq. (6.98), the initially chosen controller parameters,m and n, are kept
fixed in the adaptation process and only the TSK parameters are adjusted ensuring
V̇ < 0.

6.6.3 Application to Modular and Reconfigurable Robot

Manipulators (MRR)

A modular and reconfigurable robot with two degrees of freedom is used for
control. This robot consists of several modules that can be put together in
different positions/orientations with respect to each other. Thus, the robot can
assume multiple configurations and hence it is called reconfigurable. The robot
in this experiment has a payload of m = 6.80 kg. The MRR is controlled by
a MSK2812 DSP-based microcontroller via a controller area network (CAN)
communication bus. The microcontroller is operated at 150 MHz. Figure 6.8
shows the experimental setup.

The design matrices are
F ∈ ℝ18×18
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Figure 6.8 System hardware: computer, microcontroller, and robot (Biglarbegian et al.,
2011; © 2011, IEEE).

TABLE 6.3 Controller Parameters

Controller First Joint Second Joint

PD KPD =
[

0.025 0
0 0.008

]
Fixed Parameters m = 0.001 n = 0.001

with Fii = 10 (i = 1, … , 18), and 𝚲IT2 = diag[0.001, 0.0019], and 𝚲T1 =
diag[0.0005, 0.0004]. Control parameters are summarized in Table 6.3.

A sinusoidal trajectory is applied to each joint of the robot and control
performance is compared in terms of mean-squared error (MSE) and percentage
improvement (PI). Two different configurations of the robots are considered,
designated as first and second, and the controller performance for both of them
will be evaluated.

In the first configuration, the first and second joint axes are parallel to each other.
In the second configuration, the second joint axis is perpendicular to the first joint
axis. These two configurations are shown in Figs. 6.9 and 6.10.

The controllers’ performance in terms of MSE and PI for the first and second
configurations are shown in Tables 6.4 and 6.5, respectively. For the design of PD
controller please see Lewis et al. (1999).

From the results, the superiority of the adaptive IT2 over other nonlinear con-
trollers can be seen. The outcome verifies the potential of IT2 in handling uncer-
tainties and varying dynamics that we cannot model properly.

The next section is dedicated to the design of robust IT2 TSK FLCs.
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Figure 6.9 First configuration and its schematic (Biglarbegian et al., 2011; © 2011, IEEE).
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Figure 6.10 Second configuration and its schematic (Biglarbegian et al., 2011; © 2011,
IEEE).

TABLE 6.4 First Configuration Results

First Joint Second Joint

Controller MSE PI (%) MSE PI (%)

PD 1.2478 — 0.3323 —
T1 nonadaptive 0.7682 38.44 0.2572 22.61
T1 adaptive 0.7294 41.55 0.2313 30.41
IT2 nonadaptive 0.6098 51.13 0.1851 44.29
IT2 adaptive 0.5124 58.93 0.1724 48.12
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TABLE 6.5 Second Configuration Results

First Joint Second Joint

Controller MSE PI (%) MSE PI (%)

PD 1.1849 — 0.5709 —
T1 nonadaptive 0.7391 37.62 0.5303 7.11
T1 adaptive 0.7344 38.02 0.5129 8.34
IT2 nonadaptive 0.6302 46.82 0.5107 10.54
IT2 adaptive 0.5637 52.43 0.4181 26.77

6.7 ROBUST CONTROL DESIGN8

In this section, we develop robust IT2 TSK FLCs. So far, we have addressed impor-
tant control aspects such as stability and adaptivity, but robustness remains to be
discussed. Most of the times, particularly in dealing with real systems, we are faced
with disturbances that are undesired and cannot be modeled accurately. Therefore,
design of a robust control system that can suppress the disturbances is much needed.
The specific robust control problem we look at is the disturbance rejection, which
will be introduced later. Using the foundations built in earlier sections, we now are
ready to design a robust IT2 FLC.

6.7.1 System Description

Similar to the stability analysis that was performed in Section 6.4, we assume the
plant is modeled with a T1 TS model. To accommodate the disturbances, we first
introduce the model structure of the plant that will be used throughout our design.
The general structure of a plant described by a continuous T1 TS model is as
follows:

Rs: If r1 is Fs
1

and r2 is Fs
2

and · · · rz is Fs
z , then (6.99)

Rs: ẋs(t) = Asx(t) + Bsu(t) + Dsw(t) (6.100a)

ys(t) = Csx(t) (6.100b)

where ri is the ith input to the T1 TSK FLC, As ∈ ℝn×n, bs ∈ ℝn×m, u(t) ∈ ℝm

(controller output), and Fs
i represents a T1 FS of the ith input state of rule s, xs(t)

is the output of each rule, x(t) is the state vector given by Eq. (6.2), and M is the
number of rules, and the new vector introduced here to represent disturbances is
w(t) ∈ ℝs. The state and output vectors of the plant are, respectively, given by

ẋ(t) =
∑M

s=1 f sẋs(t)∑M
s=1 f s

(6.101)

8Much of the material in this section is taken directly from Biglarbegian (2012; © 2012, IEEE).
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y(t) =
∑M

s=1 f sys(t)∑M
s=1 f s

(6.102)

Note that we have used the same membership functions to obtain ẋ(t) and y(t),
thus the firing intervals for both are the same, that is, f s. Doing this will simplify
the control design.

To simplify notations, we use f s to represent f s(r) where r is the state vector, that
is, r = [r1, r2, · · · , rp]T . Using the same controller defined earlier in Eq. (6.21), the
IT2 FLC output is given by

u(t) = mc

∑M
s=1 gs(r)us(t)∑M

s=1 gs(r)
+ nc

∑M
s=1 gs(r)us(t)∑M

i=1 gs(r)
(6.103)

where gs and gs are short for gs(r) and gs(r) and represent, respectively, the lower

and upper firing strengths of the controller. Different notations for the firing
strengths of the plant and controller are used.

Before introducing the control problem, let us simplify the closed-loop expres-
sion of the plant controller. It is easy to see that the expressions for the state vector
and output are given as follows, respectively:

ẋ(t) =
∑M

i=1 f s[Asx(t) + Bsu(t) + Dsw(t)]∑M
s=1 f s

(6.104)

and

y(t) =
∑M

s=1 f sCsx(t)∑M
s=1 f s

(6.105)

Using the feedback design matrix, that is, Fsx(t), Eq. (6.103) can be written as

u(t) = mc

∑M
s=1gsFsx(t)∑M

s=1gs
+ nc

∑M
s=1gsFsx(t)∑M

s=1gs
(6.106)

The index s in
∑M

s=1 f s,
∑M

s=1 gs, and
∑M

s=1 gs is a dummy index. and it is therefore

true that

M∑
s=1

f s =
M∑

i=1

f i (6.107)

M∑
s=1

gs =
M∑

i=1

gi (6.108)

M∑
s=1

gs =
M∑

i=1

gi
(6.109)
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Define

hi ≡ f i∑M
s=1 f s

ki ≡ gi∑M
s=1 gs

k
i ≡ gi∑M

s=1 gs
(6.110)

Observe that
∑M

i=1 h
i = 1, and

∑M
i=1 ki =

∑M
i=1 k

i
= 1.

Using Eq. (6.110),we can express ẋ(t), y(t), and u(t) in shorter andmore compact
forms as follows:

ẋ(t) =
M∑

i=1

hi[Aix(t) + Biu(t) + Diw(t)] (6.111)

y(t) =
M∑

i=1

hiCix(t) (6.112)

u(t) = mc

M∑
i=1

kiFix(t) + nc

M∑
i=1

k
i
Fix(t) (6.113)

To find an expression for the plant dynamics, we need to substitute u(t) in Eq.
(6.113) into Eq. (6.111). Observe that both ẋ(t) and u(t) have i as their summation
index. In order to combine the two summations, we need to change one of the
dummy indices to another index other than i. Therefore, we change the dummy
index i in Eq. (6.113) to j, making it true that

u(t) = mc

M∑
j=1

kjFjx(t) + nc

M∑
j=1

k
j
Fjx(t) (6.114)

If the dummy index j in the second term of Eq. (6.114) is changed to l, it is also
true that

u(t) = mc

M∑
j=1

kjFjx(t) + nc

M∑
l=1

k
l
Flx(t) (6.115)

The reason for expressing u(t) in Eq. (6.114) using two indices (j and l) is based
on being able to combine the terms of the series in Eqs. (6.111) and (6.114) and

factor out hi, kj, k
l
. Thus, substituting u(t) in Eq. (6.114) into Eq. (6.111), we can

express ẋ(t) as

ẋ(t) =
M∑

i=1

M∑
j=1

M∑
l=1

hikjk
l
[Aix(t) + mcBiFjx(t) + ncBiFlx(t) + Diw(t)] (6.116)
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6.7.2 Disturbance Rejection Problem and Solution

The disturbance rejection problem is to ensure the following inequality holds
(Biglarbegian, 2012): ‖y(t)‖2‖w(t)‖2

≤ 𝛼 (6.117)

for ‖w(t)‖2 ≠ 0; where ‖.‖ denotes a 2-norm. In other words, we need to find
the conditions for which ‖y(t)‖2 ≤ 𝛼.‖w(t)‖2. This ensures robust disturbance
rejection.

Choose the standard quadratic Lyapunov function given as follows:

V(t) = xT (t)Px(t) (6.118)

V̇(t) can be calculated as

V̇(t) = ẋT (t)Px(t) + xT (t)Pẋ(t) (6.119)

Substituting ẋ(t) in Eq.(6.116) into Eq. (6.119), we get

V̇(t) =
M∑

i=1

M∑
j=1

M∑
l=1

hikjk
l
[Aix(t) + mcBiFjx(t)ncBiFlx(t) + Diw(t)]TPx(t)

+ xT (t)P
M∑

i=1

M∑
j=1

M∑
l=1

hikjk
l
[Aix(t) + mcBiFjx(t) + ncBiFlx(t) + Diw(t)]

(6.120)

We now state the following theorem, which will help us derive the conditions for
robustness:

THEOREM 6.2 If there exists a symmetric positive-definite matrix P such that
the following condition holds

ẋT (t)Px(t) + xT (t)Pẋ(t) + yT (t)y(t) − 𝛼2wT (t)w(t) ≤ 𝟎 (6.121)

then the closed-loop system is uniformly ultimately bounded (UUB) stable and also
condition (6.117) is satisfied (Biglarbegian, 2012).

Proof. Define 𝛽 as

𝛽 ≡ V̇(t) + yT (t)y(t) − 𝛼2wT (t)w(t) (6.122)
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Note that 𝛽 ≤ 0 is the assumption of the theorem, that is, inequalities (6.121) and

(6.122) are equivalent. If we make 𝛽 ≤ 0 for ∀t, then for any tf > 0, ∫ tf
0

𝛽 dt ≤ 0,
which in turn means

∫
tf

0

[V̇(t) + yT (t)y(t) − 𝛼2wT (t)w(t)]dt

= ∫
tf

0

[yT (t)y(t) − 𝛼2wT (t)w(t)]dt + V(tf ) − V(0) ≤ 0 (6.123)

Note that Eq. (6.123) can be rewritten as

V(tf ) + ∫
𝜏

0

[yT (t)y(t) − 𝛼2wT (t)w(t)]dt ≤ 0 (6.124)

and since V(tf ) > 0, we conclude that the following inequality must hold:

yT (t)y(t) − 𝛼2wT (t)w(t) ≤ 0 (6.125)

If we derive the conditions for which 𝛽 ≤ 0, the control objective is met. To do
so, we can express 𝛽 as follows:

𝛽 = ẋT (t)Px(t) + xT (t)Pẋ(t) + yT (t)y(t) − 𝛼2wT (t)w(t) (6.126)

Using the equivalent expression for ẋ(t), we can write Eq. (6.126) as

𝛽 =
M∑

i=1

M∑
j=1

M∑
l=1

hikjk
l
[Aix(t) + mcBiFjx(t) + ncBiFlx(t) + Diw(t)]TPx(t)

+ xT (t)P
M∑

i=1

M∑
j=1

M∑
l=1

hikjk
l
[Aix(t) + mcBiFjx(t) + ncBiFlx(t) + Diw(t)]

+ yT (t)y(t) − 𝛼2wT (t)w(t) (6.127)

Substituting y(t) in Eq. (6.112) into Eq. (6.127) we get

𝛽 =
M∑

i=1

M∑
j=1

M∑
l=1

hikjk
l
[Aix(t) + mcBiFjx(t) + ncBiFlx(t) + Diw(t)]TPx(t)

+ xT (t)P
M∑

i=1

M∑
j=1

M∑
l=1

hikjk
l
[Aix(t) + mcBiFjx(t) + ncBiFlx(t) + Diw(t)]

+ xT (t)
M∑

i=1

M∑
r=1

hihrCT
i Crx(t) − 𝛼2wT (t)w(t) (6.128)
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Defining sijlr ≡ hihrkjk
l
, we can express 𝛽 as (Biglarbegian, 2012)

𝛽 =
M∑

i,j,l,r=1

sijlrx
T (t)[Ai + Bi(mcFj + ncFl)]TPx(t)

+
M∑

i,j,l,r=1

sijlrx
T (t)P[Ai + Bi(mcFj + ncFl)]

+
M∑

i,j,l,r=1

sijlrw
T (t)DT

i Px(t) + xT (t)P
M∑

i,j,l,r=1

sijlrDiw(t)

+ xT (t)
M∑

i,j,l,r=1

sijlrC
T
i Crx(t) −

M∑
i,j,l,r=1

sijlr𝛼
2wT (t)w(t) (6.129)

We can even express 𝛽 more concisely as follows (Biglarbegian, 2012):

𝛽 =
[
xT (t) wT (t)

]
Z

[
x(t)
w(t)

]
(6.130)

where Z is given by

Z =
M∑

i,j,l,r=1

sijlr

[
Z′

11 Z12

Z21 Z22

]
(6.131)

In which

Z′
11 = [Ai + Bi(mcFj + ncFl)]TP + P[Ai + Bi(mcFj + ncFl)] + CT

i Cr (6.132)

Z12 = 1

4
P(Di + Dj + Dl + Dr) (6.133)

Z21 = 1

4
(Di + Dj + Dl + Dr)TP (6.134)

Z22 = −𝛼2I (6.135)

If Z in Eq. (6.131) is negative definite, that is, Z ≤ 𝟎, then the control objective
is achieved. In the following, we further work on the expression for Z to obtain a
simpler condition for satisfying the control objective.

Using Schur’s complement (Boyd et al., 1994), Z can be simply written as

Z =

⎡⎢⎢⎢⎢⎢⎣

(
M∑

i,j,l=1

sijlrZ11

) (
M∑

i=1

hiZ12

)
(

M∑
i=1

hiZ21

)
Z22

⎤⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎣
(

M∑
i=1

hiC
T
i

)
𝟎

⎤⎥⎥⎥⎦
[(

M∑
i=1

hiCi

)
𝟎
]

(6.136)
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where Z11 = Z′
11 − CT

i Cr. Z ≤ 𝟎 is equivalently expressed as

M∑
i,j,l,r=1

sijlr

⎡⎢⎢⎢⎣
Z11 Z12 − 1

2
(Ci + Cr)T

Z21 Z22 𝟎

− 1

2
(Ci + Cr) 𝟎 −I

⎤⎥⎥⎥⎦ ≤ 𝟎 (6.137)

Because hi, hj, k
l, k

r ≥ 0, Eq. (6.137) is equivalent to the following LMI:

⎡⎢⎢⎢⎣
Z11 Z12 − 1

2
(Ci + Cr)T

Z21 Z22 𝟎

− 1

2
(Ci + Cr) 𝟎 −I

⎤⎥⎥⎥⎦ ≤ 𝟎 (6.138)

Earlier in Section 6.4 we introduced Gijl to derive simpler stability criteria.
Because of the symmetric properties of Gijl under summation, the LMIs required
for stability can be reduced to (a) when i ≤ j and j = l and (b) when j ≤ l for ∀i.
As a result, we can further reduce the number of LMIs. Therefore, the following
two sets of LMIs are needed:

⎡⎢⎢⎢⎣
Z1

11 Z1
12 Z1

13

(Z1
12)T Z1

22 𝟎
(Z1

13)T 𝟎 −I

⎤⎥⎥⎥⎦ ≤ 𝟎 (6.139)

where Z1
11 ≡ −(GT

ijjP + PGijj), Z1
12 ≡ − 1

4
P(Di + 2Dj + Dr), Z1

13 ≡ −T12, and Z1
22 ≡

−𝛼2I; for i ≤ j.
And

⎡⎢⎢⎢⎣
Z2

11 Z2
12 Z2

13

(Z2
12)T Z2

22 𝟎
(Z2

13)T 𝟎 −I

⎤⎥⎥⎥⎦ ≤ 𝟎 (6.140)

where Z2
11 ≡ −(GT

ijlP + PGijl), Z2
12 ≡ − 1

4
P(Di + Dj + Dl + Dr), Z2

13 ≡ −T12, and

Z2
22 ≡ −𝛼2I; for j ≤ l.

Note. Similar to Section 6.4, performing a parallel analysis produces the final
LMIs for discrete systems that are given as

⎡⎢⎢⎢⎢⎢⎣

Z1
11 𝟎 Z1

13 Z1
14

𝟎 Z1
22 Z1

23 𝟎
(Z1

13)T (Z1
23)T Z1

33 𝟎
(Z1

14)T 𝟎 𝟎 −I

⎤⎥⎥⎥⎥⎥⎦
≤ 𝟎 (6.141)
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where Z1
11 ≡ −P, Z1

13 ≡ − 1

2
(Gijj + Gjii)T , Z1

14 ≡ − 1

2
(Ci + Cr)T , Z1

22 ≡ −𝛼2I, Z1
23 ≡

− 1

4
(Di + 2Dj + Dr)T , and Z1

33 ≡ −P−1 for i ≤ j.
As well

⎡⎢⎢⎢⎢⎢⎣

Z2
11 𝟎 Z2

13 Z2
14

𝟎 Z2
22 Z2

23 𝟎
(Z2

13)T (Z2
23)T Z2

33 𝟎
(Z2

14)T 𝟎 𝟎 −I

⎤⎥⎥⎥⎥⎥⎦
≤ 𝟎 (6.142)

where Z2
11 ≡ −P, Z2

13 ≡ − 1

2
(Gijl + Gilj)T , Z2

14 ≡ − 1

2
(Ci + Cr)T , Z2

22 ≡ −𝛼2I, and

Z2
23 ≡ − 1

4
(Di + Dj + Dl + Dr)T for j ≤ l.

6.7.3 Robust Control Example

Example 6.3 Robust control (the code for this example can be found online on
the Wiley website of the textbook). This section presents an example to demon-
strate how the derived LMIs used for robust disturbance rejection can control a
design problem. Assume an IT2 TSK FLC is modeled as follows (The membership
functions are shown in Fig. 6.11):

Rule 2: If x1(k) is “around 0,” then x(k + 1) = A1x(k) + B1u(k) + D1w(k).
Rule 2: If x1(t) is “around 1,” then x(k + 1) = A2x(k) + B2u(k) + D2w(k).

0
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Figure 6.11 Membership functions (Biglarbegian, 2012; © 2012, IEEE).
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where the matrices for the plant and controller are given by

A1 =

[
0.9 0.636

0.737 0.1

]
A2 =

[
0.461 0.547

0.199 0.243

]

B1 =

[
184

0.469

]
B2 =

[
0.164

0.988

]
C1 =

[
1 0

0 1

]

D1 =

[
0.1 0.837

0.214 0.236

]
C1 = C2, D1 = D2

After solving the LMIs in Eqs. (6.141) and (6.142), the positive-definite matrix
P is computed as

P =

[
0.2104 −0.0264

−0.0264 5.3830

]

The existence of P means LMIs in Eqs. (6.141) and (6.142) are satisfied. In
other words, the LMIs are feasible, implying that the robust control objective given
in Eq. (6.117) is met.

6.8 SUMMARY

In this chapter we used TSK model structure for the design of IT2 TSK FLCs. To
design and analyze IT2 FLCs mathematically, a closed form is needed. We first
introduced a novel inference engine that has a closed form. This inference engine
has a simple structure and enables mathematical analysis of IT2 FLCs as well as
easy real-time control implementations.

Starting with stability analysis, adaptive IT2 TSK FLCs for robotic arms were
developed as well as systematic methods for robust control design. The bench-
mark examples and a real-time implementation on a modular and reconfigurable
robotic system demonstrate how the developed theory can be effectively used in
real applications. The mathematical methodologies presented in this chapter play
a key role in analytical and systematic design as well as analyses of IT2 TSK
FLCs. This design is theoretically sound and can be applied to nonlinear plantswith
uncertainty.

APPENDIX9

In this appendix, we show that Um−n(x) in Eq. (6.16) is a simplified version of the
WM UBs. We prove this only for a continuous IT2 TSK model. To avoid repetition,

9Much of the material in this section is taken directly from Biglarbegian et al. (2010; © 2010, IEEE).
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very similar analyses can be performed on the discrete case. Section 3.4 shows the
general form of WM UBs is given by Eq. (3.88), that is,

UWM(x) = 1

2

[
ul(x) + ul(x)

2
+

ur(x) + ur(x)
2

]
(6.143)

where ul(x), ul(x), ur(x), and ur(x) are given by Eqs. (3.83)–(3.86), respectively.
We apply this general form of WM UBs to Eqs. (6.11)–(6.15).

Since the consequent part of the IT2TSK are crisp numbers, that is, usl = usr = us,
the boundaries defined by Eqs. (3.79)–(3.82) reduce to the following two equations:

u(0)(x) =

∑M
s=1f s(x)us∑M
s=1f s(x)

(6.144)

u(M)(x) =
∑M

s=1f
s
(x)us∑M

s=1f
s
(x)

(6.145)

Without loss of generality, assume u(M)(x) > u(0)(x) [UWM(x) is invariant to
u(M)(x) > u(0)(x)]; therefore, Eqs. (3.83)–(3.86) can be written as

ul(x) = u(0)(x) =

∑M
s=1 f s(x)us∑M
s=1 f s(x)

(6.146)

ur(x) = u(M)(x) =
∑M

s=1 f
s
(x)us∑M

s=1 f
s
(x)

(6.147)

ul(x) =

∑M
s=1 f s(x)us∑M
s=1 f s(x)

−
⎡⎢⎢⎢⎣
∑M

s=1

(
f
s
(x) − f s(x)

)
∑M

s=1 f s(x).
∑M

s=1 f
s
(x)

×

∑M
s=1 f s(x)(us − u1).

∑M
s=1 f

s
(x)(uM − us)∑M

s=1 f s(x)(us − u1) +
∑M

s=1 f
s
(x)(uM − us)

⎤⎥⎥⎥⎦
(6.148)

ur(x) =
∑M

s=1 f
s
(x)us∑M

s=1 f
s
(x)

+
⎡⎢⎢⎢⎣
∑M

s=1

(
f
s
(x) − f s(x)

)
∑M

s=1 f s(x).
∑M

s=1 f
s
(x)

×

∑M
s=1 f

s
(x)(us − u1).

∑M
s=1 f s(x)(uM − us)∑M

s=1 f
s
(x)(us − u1) +

∑M
s=1 f s(x)(uM − us)

⎤⎥⎥⎥⎦
(6.149)
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Using Eqs. (6.146)–(6.149), it is straightforward to show that UWM(x) in
Eq. (6.143) can be expressed as

UWM(x) = 1

2

⎛⎜⎜⎝
∑M

s=1 f s (x) us∑M
s=1 f s(x)

+
∑M

s=1 f
s
(x)us∑M

s=1 f
s
(x)

⎞⎟⎟⎠
− 1

4

⎡⎢⎢⎣
∑M

s=1(f
s
(x) − f s(x))∑M

s=1 f s (x) .
∑M

s=1 f
s
(x)

×

∑M
s=1 f s(x)(us − u1).

∑M
s=1f

s
(x)(uM − us)∑M

s=1f s(x)(us − u1) +
∑M

s=1f
s
(x)(uM − us)

⎤⎥⎥⎦
+ 1

4

⎡⎢⎢⎣
∑M

s=1(f
s
(x) − f s(x))∑M

s=1f s (x) .
∑M

s=1f
s
(x)

×

∑M
s=1f

s
(x)(us − u1).

∑M
s=1f s(x)(uM − us)∑M

s=1f
s
(x)(us − u1) +

∑M
s=1f s(x)(uM − us)

⎤⎥⎥⎦
(6.150)

UWM(x) can be computed without having to performTR, and therefore UWM(x) can
be considered a viable alternative to using Eqs. (6.15) and (6.14).

We apply UWM(x) to UTSK/A2-C0(x) using the following model that appears in the
consequent of rule s in Eq. (6.4):

us =
p∑

i=1

csi xi (6.151)

It follows that

us − u1 =
p∑

i=1

(csi − c1
i )xi ≡

p∑
i=1

𝑣s,pcsi xi (6.152)

uM − us =
p∑

i=1

(cM
i − csi )xi ≡

p∑
i=1

𝑤s,pcsi xi (6.153)

where

𝑣s,p ≡ csi − c1
i

csi
(6.154)

𝑤s,p ≡ cM
i − csi

csi
(6.155)

Substituting Eqs. (6.151)–(6.153) into Eq. (6.150), UWM(x) can be expressed as

UWM(x) = 1

2

∑M
s=1f s(x)

(∑p
i=1

csi xi

)
∑M

s=1f s(x)
+ 1

2

∑M
s=1f

s
(x)

(∑p
i=1

csi xi

)
∑M

s=1f
s
(x)

+ 𝛼(x) + 𝛽(x)

(6.156)
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where

𝛼(x) = −1

4

∑M
s=1(f

s
(x) − f s(x))∑M

s=1f s(x).
∑M

s=1f
s
(x)

×

∑M
s=1f s(x)

(∑p
i=1

𝑣s,pcsi xi

)
.
∑M

s=1f
s
(x)

(∑p
i=1

𝑤s,pcsi xi

)
∑M

s=1f s(x)
(∑p

i=1
𝑣s,pcsi xi

)
+

∑M
s=1f

s
(x)

(∑p
i=1

𝑤s,pcsi xi

) (6.157)

𝛽(x) = 1

4

∑M
s=1(f

s
(x) − f s(x))∑M

s=1f s(x).
∑M

s=1f
s
(x)

×

∑M
s=1f

s
(x)

(∑p
i=1

𝑣s,pcsi xi

)
.
∑M

s=1f s(x)
(∑p

i=1
𝑤s,pcsi xi

)
∑M

s=1f
s
(x)

(∑p
i=1

𝑣s,pcsi xi

)
+

∑M
s=1f s(x)

(∑p
i=1

𝑤s,pcsi xi

) (6.158)

Using Eqs. (6.159) and (6.160), 𝛼(x) and 𝛽(x) can be expressed as nonlinear
functions of the upper and lower firing levels of each rule, as well as the input
states, that is,

𝛼(x) = g1(f s(x), f
s
(x), x, 𝑣s,p, 𝑤s,p) ×

∑M
s=1f s(x)

(∑p
i=1

csi xi

)
∑M

s=1f s(x)
(6.159)

𝛽(x) = g2(f s(x), f
s
(x), x, 𝑣s,p, 𝑤s,p) ×

∑M
s=1f

s
(x)

(∑p
i=1

csi xi

)
∑M

s=1f
s
(x)

(6.160)

where functions g1and g2 are given by10

g1 = −1

4

∑M
s=1(f

s
(x) − f s(x))[∑M

s=1f s (x)
(∑p

i=1
csi xi

)]∑M
s=1f

s
(x)

×

∑M
s=1

[
f s(x)

(∑p
i=1

𝑣s,pcsi xi

)]∑M
s=1

[
f
s
(x)

(∑p
i=1

𝑤s,pcsi xi

)]
∑M

s=1

[
f s(x)

(∑p
i=1

𝑣s,pcsi xi

)]
+

∑M
s=1

[
f
s
(x)(

∑p
i=1

𝑤s,pcsi xi)
] (6.161)

10In order to simplify the notation, in the rest of the derivation g1 and g2 are short for g1(f
s(x),

f
s
(x), x, 𝑣s,p, 𝑤s,p) and g2(f

s(x), f
s
(x), x, 𝑣s,p, 𝑤s,p).
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g2 = 1

4

∑M
s=1

(
f
s
(x) − f s(x)

)
[∑M

s=1f
s
(x)

(∑p
i=1

csi xi

)]∑M
s=1f s(x)

×

∑M
s=1

[
f
s
(x)

(∑p
i=1

𝑣s,pcsi xi

)]∑M
s=1

[
f s(x)

(∑p
i=1

𝑤s,pcsi xi

)]
∑M

s=1

[
f
s
(x)(

∑p
i=1

𝑣s,pcsi xi)
]
+

∑M
s=1

[
f s(x)(

∑p
i=1

𝑤s,pcsi xi)
] (6.162)

Using Eqs. (6.159)–(6.162), UWM(x) in Eq. (6.156) can be written as

UWM(x) =

∑M
s=1f s(x)

(
1

2

∑p
i=1

csi xi

)
∑M

s=1f s(x)
+

∑M
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s
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(
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csi xi

)
∑M

s=1f
s
(x)

+ g1 ×

∑M
s=1f s(x)

(∑p
i=1

csi xi

)
∑M

s=1f s(x)
+ g2 ×

∑M
s=1f

s
(x)

(∑p
i=1

csi xi

)
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s=1f
s
(x)

(6.163)

Combining the first and third terms, and second and fourth terms of UWM(x), Eq.
(6.163) can be rewritten as

UWM(x) =

∑M
s=1f s(x)

⎛⎜⎜⎜⎜⎝
∑p

i=1

m
⏞⏞⏞⏞⏞⏞⏞(

1

2
+ g1

)
[csi xi]

⎞⎟⎟⎟⎟⎠∑M
s=1f s(x)

+

∑M
s=1f

s
(x)

⎛⎜⎜⎜⎜⎝
∑p

i=1

n
⏞⏞⏞⏞⏞⏞⏞(

1

2
+ g2

)
[csi xi]

⎞⎟⎟⎟⎟⎠∑M
s=1f

s
(x)

(6.164)

Comparing Eqs. (6.164) and (6.16), remembering that us is given by Eq. (6.151),

it can be seen that m and n correspond to
(

1

2
+ g1

)
and

(
1

2
+ g2

)
, respectively, and

hence UWM(x) simplifies to Um−n(x).



CHAPTER 7

Looking into the Future

7.1 INTRODUCTION

Writing a multiauthored book about T2 FL control has been very worthwhile but
has also been very challenging. It has been very worthwhile because all of the
authors are in agreement that the time is right to bring different perspectives about
T2 FL control together, aswe have done in this book, so that the FL control commu-
nity has all of this material in one place. It has been very challenging because there
are different perspectives on T2 FL control, some verymathematically rigorous and
others not so much.

This last chapter focuses on where we feel T2 FL control should be heading.
Unlike all of the previous chapters, in this chapter the authors of each section are
identified and have an opportunity to express their viewpoints on where they feel
T2 FL control should be heading.

7.2 WILLIAM MELEK AND HAO YING LOOK INTO THE FUTURE

This book presents the foundations of IT2 FL control and provides several method-
ologies for modeling and control that utilize this advanced approach. From the six
chapters, it should be clear to the reader by now that IT2 FLCs are (1) nonlinear con-
trollers (with complicated input–output relations) and (2) more complex than their
T1 counterparts in terms of the mathematical descriptions of their input–output
relations and the number of their design parameters. Consequently, analyzing or
designing an IT2 FLC system is substantially more challenging than analyzing or
designing a T1 FLC system. With these facts in mind, we would like to point out
the following research directions considered to be important for the future of IT2
FL control.

In the 1980s, the following question had to be faced by the fuzzy control commu-
nity: When should a T1 FLC be used instead of a conventional controller? Because
the advantages and disadvantages of T1 FL control, with respect to those of con-
ventional control, were relatively easy to determine and understand, that question
was not too difficult to be settled. The advantages include no need for the system’s

Introduction to Type-2 Fuzzy Logic Control: Theory and Applications, First Edition.

Jerry M. Mendel, Hani Hagras, Woei-Wan Tan, William W. Melek, and Hao Ying.
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mathematical model, as well as the ability to incorporate expert knowledge and

experience in the form of fuzzy rules and fuzzy sets. The disadvantages include

more difficult to construct and tune a T1 FLC, and more expensive to implement

in hardware. Of course, T1 FLC does not and cannot replace conventional control,

linear or nonlinear; instead, it complements conventional control rather nicely.

By the same token, it should not be difficult to understand that IT2 FL control

will not, and cannot, replace either T1 FL control or conventional control. The three

control methodologies are complementary. Arguably, one of the most important

research directions is to develop a theory capable of determining whether or not an

IT2 FLC should be used for any given practical control application, that is, a theory

is needed that can be used ahead of time to determine whether an IT2 FLC should

be employed as opposed to using a T1 FLC.

It is important that such a theory be simple and effective so that it can be used by

a control practitioner who may know some thing about T1 FL control but has little

knowledge about IT2 FL control (it is not very realistic to assume that someone

knows nothing about T1 FL control and is considering to use IT2 FL control).

This theory should not be simulation based because a system’s accurate mathe-

matical model is, realistically speaking, always nonlinear and thus is very difficult

to obtain in practice.This theory should also not be heavily reliant on trial-and-error

efforts because it is not only costly but it is also risky to experiment with a real

system (such as, e.g., systems in the nuclear industry and human physiological

systems).

In practice, IT2 FL control may have to prove itself superior to both T1 FL con-

trol and conventional control for a particular control problem before it will actually

be used. Because T1 FL control and conventional control are able to deliver sat-

isfactory solutions for so many different practical control problems, defining the

niche applications that require the distinct merits of IT2 FL control is a critically

important but technically challenging area for study.

Another important factor that one has to keep in mind is that a real-world con-

trol application typically seeks the simplest and least expensive hardware/software

solution that satisfies the technical specifications imposed by the customer or user.

This is why PID control, with only three design parameters, all of which can be

tuned manually in an intuitive manner, has become the most popular control strat-

egy since its inception, dating back to the preelectronic period. It currently dom-

inates about 90% of industrial processes worldwide (O’Dwyer, 2003) despite the

availability of numerous more advanced and better (at least in theory) controllers

developed in the past dozens of years (e.g., optimal controllers and robust con-

trollers). A T2 FLC will not be used unless its added structural complexity and

additional design parameters (as compared to a T1 FLC) can be reasonably justi-

fied by demonstrated significant gains in control performance (e.g., better transition

control response and more robust performances in the presence of noise and dis-

turbances to the system). Research has been under way to address the question of

when IT2 FL control can be used for substantial performance improvement, and

more and more publications are appearing about this.
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As is evident by trends in the recent literature, another important research
direction is to extend the analysis and design techniques that have been developed
for various T1 FLCs and systems to IT2 FLCs and systems. Interestingly,
methodologies available for analyzing and designing IT2 FLCs and systems are
fundamentally the same as those utilized for designing T1 FLCs and systems. For
example, the Lyapunov approach, which has been widely used for T1 FL control
systems as well as for conventional nonlinear control systems, is the only general
tool that has been used for analyzing the stability of or designing a stable IT2 FL
control system. To date, there exists no other more effective stability approach
for IT2 FL control systems. It is presently the most general and best technique
available for IT2 FL controllers and systems, and we believe that it will play a
crucial role in the development of future IT2 FL control theory. Note, however,
that extending T1 results to IT2 results is very challenging because, generally
speaking, an IT2 FL controller is a (much) more complicated nonlinear controller
than is a T1 FL controller.

Among the many real-world application areas that may be appropriate for IT2
FL control is robotics. For example, in the field ofmobile robots, IT2 FL control can
be used to design motion controllers for mobile manipulators and mobile robot for-
mations. The governing equations, which include the dynamics of robots, motors,
and actuators, can be transformed and reformulated into a new space that includes
nonholonomic constraints. Assuming only the upper bounds of uncertainties to be
known, tracking error dynamics can be obtained for which a controller is designed
to guarantee the stability of the error dynamics. IT2 FL control is a good candidate
for this type of control problem because it has been shown to be very effective for
handling uncertainties.

Biomedicine is another promising application area where IT2 FL control may
be effectively utilized. For instance, IT2 FL control may be applied for control of
drug dosage in chronic disease management such as diabetes and hypertension.
This kind of controller is not necessarily of the PID type that has been the focus
of some of the earlier chapters of this book. It is a feedback controller in a more
general sense, that is, a different and more advanced and intelligent control form
where IT2 FL can play an even more critical role by taking advantage of an expert’s
linguistically expressed knowledge and experience. IT2 FL supervisory control and
hierarchal controllers are representatives of such IT2 FLCs; both have been studied
in the context of T1 FL control many years ago.

For many disease treatments, effective drug dosages for condition management
differ for different patients based on several factors such as preexisting conditions
and other medications being taken, as well as age and ethnic background. The FOU
of an IT2 FS can be used to represent a range of dosages considered for condition
management, for example, to define a range of Coumadin dosage that can be pre-
scribed for more effective control of international normalized ratio (INR) levels or
as an indicator of the time it takes for blood to clot for patients with atrial fibril-
lation. The adjustment of Coumadin dosage has always been a challenge for such
patients; too high of an INR value can result in internal bleeding, whereas too low
of an INR value can result in blood clotting and an increased risk of a stroke. The
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target INR for most people with cardiac conditions is 2.5–3.5, and the Coumadin
dosage to achieve this range varies among individuals based on several factors such
as vitamin K intake levels, othermedications, age,weight, and social habits. IT2 FL
control methodologies similar to those presented in Chapters 3–6 can be applied
offline to personalize medication dosages for individual patients in order to control
their Coumadin intake based on target INR and other input factors such as vita-
min intake, many of which introduce uncertainties in terms of their input ranges.
Such uncertainties suggest that IT2 FL control may be very effective for this kind
of individualized control.

7.3 HANI HAGRAS LOOKS INTO THE FUTURE1

The emphasis in Chapters 3–6 has been on the simplest kind of T2 FL control,
namely IT2 FL control that uses singleton fuzzification. As control environments
become more challenging (e.g., nonstationary noises and conditions of observation
that affect the values obtained from sensor values), and as our understanding of
capturing and modeling different types of uncertainty develops further, there will
be a need for other kinds of more advanced T2 FLCs.

There are three directions in which such advances can occur: (1) nonsingleton
IT2 FL control, (2) singleton general T2 FL control, and (3) nonsingleton general
T2 FL control. This section focuses only on advances 1 and 2 because advance 3 is
a mixture of advances 1 and 2.

7.3.1 Nonsingleton IT2 FL Control

A nonsingleton FLC is one whose inputs are modeled as fuzzy numbers. Recall that
the inputs to a nonsingleton T1 FLC can only be modeled as T1 fuzzy numbers. On
the other hand, the inputs to a nonsingleton IT2 FLC can be modeled either as T1
fuzzy numbers or as IT2 fuzzy numbers. Because the inputs to a nonsingleton IT2
FLC can be fuzzified in these two ways, each is considered separately next.

7.3.1.1 T1 Nonsingleton IT2 FLC A T1 nonsingleton IT2 FLC is described
by the same diagram as is the singleton IT2 FLC that is depicted in Fig. 3.2. The
rules of a T1 nonsingleton IT2 FLC are the same as for a singleton IT2 FLC. What
are different is the fuzzifier, which treats the inputs as T1 FSs (i.e., a measured
value is treated as signal plus stationary noise), and the effect of this on the infer-
ence block. The output of the inference block will again be an IT2 FS; so, the
type-reducers and defuzzifiers that were described for a singleton IT2 FLC (Chapter
3) apply as well to a T1 nonsingleton IT2 FLC.

In a T1 nonsingleton IT2 FLC, measurement xi = x′i is mapped into a T1 fuzzy
number, which means that a T1 FS membership function (MF) is associated with
it. More specifically, a T1 nonsingleton fuzzifier is one for which (i= 1,… , p):

1These statements reflect the joint opinions of Hani Hagras and Christian Wagner.
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𝜇Xi
(x′i) = 1 and 𝜇Xi

(xi) decreases from unity as xi moves away from x′i [contrast this
with Eq. (3.10)]. Conceptually, the T1 nonsingleton fuzzifier implies that the given
input value x′i is the most likely value to be the correct one from all of the values in
its immediate neighborhood.

Example 7.1 When the input is modeled as a Gaussian T1 fuzzy number whose
standard deviation 𝜎 is proportional to the MF spread, then 𝜇Xi

(xi) can be expressed
as (all secondary grades equal 1)

𝜇X̃i
(xi) = 1∕e−(xi−x′i )

2∕2𝜎2 ∀xi ∈ Xi (7.1)

When the input is modeled as a triangular fuzzy number, as in Fig. 7.1, where c
is the MF spread, then 𝜇Xi

(xi) can be expressed as

𝜇X̃i
(xi) = 1

/⎧⎪⎨⎪⎩
xi−(x′i−c∕2)

c∕2

(
x′i −

c
2

) ≤ xi ≤ x′i

(x′i+c∕2)−xi

c∕2
x′i ≤ xi ≤

(
x′i +

c
2

) (7.2)

Turning to the effects of T1 nonsingleton fuzzification on the inference block,
when the inputs to the IT2 FLC are T1 FSs, then the computations for the
firing interval are more complicated than they are in the singleton fuzzification
case.

Because all of the Chapter 3 derivations for an IT2 FLC usedT1 FSmathematics,
thiswould be a good time for the reader to review the sup-star composition formulas
for a nonsingleton T1 FLC that are given in Eqs. (3.9)–(3.12). Observe from these
equations that it is the computations of

xsm,max = arg sup
xm∈Xm

𝜇Xm
(xm) ⋆ 𝜇Fs

m
(xm)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜇Qsm

(xm)

(7.3)

u

xc0

1

Figure 7.1 Primary membership of a triangular T1 nonsingleton fuzzy number in the x-u
domain.
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followed by

𝜇Qs
m
(xsm,max) = 𝜇Xm

(xsm,max) ⋆ 𝜇Fs
m
(xsm,max) (7.4)

that are challenging.
In Section 3.3 we showed that all computations for an IT2 FLC involve using

only the lower and upper MFs of the IT2 FSs. Because a T1 FS can be interpreted
as an IT2 FS whose lower and upper MFs are both equal to the T1 MF, it is intu-
itively obvious that for T1 nonsingleton fuzzification, Corollary 3.1, for computing
the firing interval, becomes [for derivations of these equations, see Mendel (2001,
Chapter 11) and Mendel et al. (2006)]:

F(x′) ≡ [f (x′), f (x′)] (7.5)

f (x′) ≡ Tp
m=1

𝜇
Qm

(xsm,max
) (7.6)

f (x′) ≡ Tp
m=1

𝜇Qm
(xsm,max) (7.7)

where

xsm,max
= arg sup

xm∈Xm

𝜇Xm
(xm) ⋆ 𝜇

Fs
m

(xm)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝜇
Qsm

(xm)

(7.8)

xsm,max = arg sup
xm∈Xm

𝜇Xm
(xm) ⋆ 𝜇Fs

m
(xm)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜇Qsm

(xm)

(7.9)

𝜇
Qs

m

(xsm,max
) = 𝜇Xm

(xsm,max
) ⋆ 𝜇

Fs
m

(xsm,max
) (7.10)

𝜇Qs
m
(xsm,max) = 𝜇Xm

(xsm,max) ⋆ 𝜇Fs
m
(xsm,max) (7.11)

The next example illustrates the computations in Eqs. (7.8)–(7.11).

Example 7.2 Figure 7.2 depicts the measurement xi = x′i = 14 modeled as a tri-
angular T1 fuzzy number, where c= 4, so that it spans from 12 to 16. Observe
that this fuzzy set overlaps both Low and Medium, which are the FOUs of rule
antecedents.

We shall now provide each of the computations in Eqs. (7.8)–(7.11) with a geo-
metrical interpretation, when the minimum is used for the t-norm and the maximum
is used for the supremum. For notational simplicity we drop the s superscripts.
In Eq. (7.8), x

Low,max
= arg supxm∈Xm

min(𝜇Xm
(xm), 𝜇Low

(xm)) is found at one of the

intersections of the LMF for Low and the triangle for 𝜇Xm
(xm) that is centered about

14. Observe, from Fig. 7.2, that there are two such intersections, but it is at the inter-
section of the LMF for Low and the left leg of the triangle for 𝜇Xm

(xm) at which u
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Medium HighLow

100
0

1

15 17 20 23 25 27 30 35 x

u

μQLow
 (13.11)

μQLow
 (14)

12 14 16

The triangle type 1 fuzzy
number that maps the 

incoming measurement of 14

Figure 7.2 Example of T1 nonsingleton fuzzification.

has its maximum value; hence, x
Low,max

= 13.11, and

𝜇
QLow

(13.11) = min(𝜇Xm
(13.11), 𝜇

Low
(13.11))

= 𝜇Xm
(13.11) = 𝜇

Low
(13.11) = 0.557 (7.12)

Of course, in order to obtain the actual numerical values for x
Low,max

and
𝜇

QLow

(13.11), we wrote equations for the LMF for Low and the left leg of the

triangle for 𝜇Xm
(xm) that is centered about 14, and used some algebra.

In Eq. (7.9), xLow,max = arg supxm∈Xm
min(𝜇Xm

(xm), 𝜇Low(xm)) is found at the sin-
gle intersection of the UMF for Low and the apex of the triangle for 𝜇Xm

(xm) that
is centered about 14, that is, xLow,max = 14; hence, 𝜇QLow

(14) = 1.
We leave it to the reader to follow the same steps to compute x

Medium,max
,

𝜇
QLow

(x
Medium,max

), xMedium,max and 𝜇QMedium
(xMedium,max), for example, (see Fig. 7.2),

𝜇
QLow

(x
Medium,max

) = 0.

Mendel (2001, Chapter 12, Examples 12-2 and 12-3) shows that by using T1
nonsingleton fuzzification the firing interval is increased over the firing interval
obtained using singleton fuzzification. This makes physical sense in that uncer-
tainty about the measured inputs must be protected against, and the way to do this
is to increase the firing interval.

It is only the computations of the firing interval for a T1 nonsingleton IT2 FLC
that change. All of the remaining computations, such as the ones that are illustrated
in the comprehensive example in Section 3.3.2.6, remain the same.

7.3.1.2 T2 Nonsingleton IT2 FLC A T2 nonsingleton IT2 FLC is also
described by the same diagram as is a singleton IT2 FLC (Fig. 3.4). The rules of a
T2 nonsingleton IT2 FLC are also the same as for a singleton IT2 FLC. What are
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u

xxi ′0
0

1

Figure 7.3 Primary membership of a T2 nonsingleton fuzzy number in the x-u domain.

different is the fuzzifier, which treats the inputs now as IT2 FSs (i.e., a measured
value is treated as signal plus nonstationary noise), and also the effect of this on
the inference block. The output of the inference block will again be an IT2 FS; so,
again the type-reducers and defuzzifiers that were described for a singleton IT2
FLC (Chapter 3) apply as well to the T2 nonsingleton IT2 FLC.

In a T2 nonsingleton IT2 FLC, measurement xi = x′i is mapped into a T2 fuzzy
number, which means that an FOU is associated with it. Possible MFs are: Gaus-
sian with uncertain standard deviation whose mean is located at x′i ; Gaussian with
uncertain mean that is located in some range about x′i ; Gaussian with uncertain
mean and standard deviation, where the mean is also located in some range about
x′i ; and so forth. Conceptually, the T2 nonsingleton fuzzifier implies that the given
input value x′i is the most likely value to be the correct one from all values in its
immediate neighborhood (Mendel, 2001). Because the incoming input signal is cor-
rupted by nonstationary noise and uncertainty, neighboring points are also likely to
be a correct value, but to a lesser degree.

Example 7.3 The shape of the incoming measurement x′i modeled as a triangular
nonsingleton fuzzy number is shown in Fig. 7.3.

Turning to the effects of T2 nonsingleton fuzzification on the inference block,
when the inputs to the IT2 FLC are T2 FSs, then the computations for the firing
interval are even more complicated than they were in the T1 fuzzification case.

Because an IT2 FS is described by its lower and upper MFs, Corollary 2.2,
for computing the firing interval, becomes [for derivations of these equations, see
Mendel (2001, Chapter 12) and Mendel et al. (2006)]: (1) Equations (7.5)–(7.7)
are unchanged, but Eqs. (7.8)–(7.11) are changed to

xsm,max
= arg sup

xm∈Xm

𝜇
Xm

(xm) ⋆ 𝜇
Fs

m

(xm)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝜇
Qsm

(xm)

(7.13)

xsm,max = arg sup
xm∈Xm

𝜇Xm
(xm) ⋆ 𝜇Fs

m
(xm)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜇Qsm

(xm)

(7.14)
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μQLow (14)

12 13 14 15 16

Figure 7.4 Example of nonsingleton T2 fuzzification for an IT2 Mamdani FLC.

𝜇
Qs

m

(xsm,max
) = 𝜇

Xm

(xsm,max
) ⋆ 𝜇

Fs
m

(xsm,max
) (7.15)

𝜇Qs
m
(xsm,max) = 𝜇Xm

(xsm,max) ⋆ 𝜇Fs
m
(xsm,max) (7.16)

The next example illustrates the computations in Eqs. (7.13)–(7.16).

Example 7.4 This example beginswith the antecedent word FOUs that were used
in Example 7.2 (Fig. 7.2) andmodels themeasured value of the input at xi = x′i = 14
by a trapezoidal FOU. This FOU also overlaps both Low and Medium.

As we did in Example 7.2, we shall provide each of the computations
in Eqs. (7.13)–(7.16) with a geometrical interpretation, but with less detail
than in that example. As in Example 7.2, the minimum is again used for the
t-norm and the maximum is used for the supremum. In Eq. (7.13), x

Low,max
=

arg supxm∈Xm
min(𝜇

Xm

(xm), 𝜇Low
(xm)) is found at one of the intersections of the

LMFs for Low and 𝜇
Xm

(xm) that is centered about 14. Observe, from Fig. 7.4, that

there are two such intersections, but it is again at the intersection of the LMF for
Low and the left leg of the triangle for 𝜇

Xm

(xm) at which u has its maximum value.

Observe also that x
Low,max

appears to be a bit to the right of 13, say 13+; and
𝜇

QLow

(13+) appears to be a bit below 0.5, say 0.5−, that is,

𝜇
QLow

(13+) = min(𝜇
Xm

(13+), 𝜇
Low

(13+)) = 𝜇
Xm

(13+) = 𝜇
Low

(13+) = 0.5−
(7.17)

Of course, in order to obtain the actual numerical values for x
Low,max

and
𝜇

QLow

(13+), we need to find equations for the LMFs of Low and 𝜇
Xm

(xm) that are

centered about 14, and use some algebra.
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In Eq. (7.14), xLow,max = arg supxm∈Xm
min(𝜇Xm

(xm), 𝜇Low(xm)) is found at one

of the intersections of the UMFs for Low and 𝜇Xm
(xm) that is centered about 14.

Observe from Fig. 7.4 that such intersections occur where the top portion of the
UMFs for Low and 𝜇Xm

(xm) intersect, where u has its maximum value of 1. Because
𝜇QLow

= 1 for all of these x values, we can associate any one of them with 𝜇QLow
, for

example, xm = 14.
We leave it to the reader to follow the same steps to compute x

Medium,max
,

𝜇
QLow

(x
Medium,max

), xMedium,max and 𝜇QMedium
(xMedium,max).

Mendel (2001, Chapter 12, Examples 12-2 and 12-3) shows that by using T2
nonsingleton fuzzification the firing interval is further increased over the firing
intervals obtained by using either singleton or T1 fuzzification. This again makes
physical sense because the increased uncertainty about the measured inputs, mod-
eled now by FOUs, must be protected against, and the way to do this is to further
increase the firing interval.

7.3.1.3 Comments All of the above results for nonsingleton fuzzification have
been known for a long time. The research challenge is to figure out how to perform
the much more complicated firing interval computations so that nonsingleton fuzzi-
fication can be used in real-time FLC. Another research challenge is to quantify
the relationships between nonsingleton fuzzification and control measures such as
robustness.

7.3.2 zSlices-Based Singleton General T2 FL Control2

Mamdani IT2 FLCs as discussed throughout most of this book are based on IT2
FSs. As detailed in Section 2.3, IT2 FSs are a simplification of what is now com-
monly referred to as general type 2 (GT2) FSs. Whereas for GT2 FSs the degree
of membership of a given point is modeled as a distribution (specifically a T1 FS),
the degree of membership in IT2 sets is modeled as an interval, sacrificing the
additional degree of freedom but greatly reducing the complexity in the underlying
theory, implementation, and computation.

A detailed overview of the background on GT2 FSs as well as the slices-based
representation (through zSlices or 𝛼 planes) is included in Section 2.4; here we pro-
vide a brief reminder of the development and types of representations of GT2 FSs,
followed by a detailed description of how GT2-FS-based FLCs can be implemented
based on IT2 FLCs by leveraging the zSlice representation.

Although IT2 FLCs have been employed successfully in many applications,
the potential of employing GT2 FLCs has driven research over the last 10 years
(e.g., Coupland and John, 2007; Liu, 2008; Wagner and Hagras, 2008) to develop
different representations for GT2 FSs that enable the harnessing of the model-
ing power of GT2 FLCs while avoiding the computation complexities that tradi-
tionally prevented their real-world application. Most recently, the 𝛼-plane (Liu,

2The material in this section is taken from Wagner and Hagras (2010; © 2010, IEEE).
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2008) and zSlice (Wagner and Hagras, 2010) representations for GT2 FSs have
enabled the representation of GT2 FSs as a series of modified IT2 FS “slices,”
which enables the real-world application of GT2 FLCs with minimal implementa-
tion and design effort (beyond that involved in IT2 FLCs) and manageable compu-
tational complexity.

Fundamentally, the 𝛼-plane and zSlice representations are based on identical
concepts and ideas (see Table 2.6). The difference in naming originally arose from
the independent development from different starting points of both representations
around the same time and both names have been used interchangeably since their
introduction in 2008. From a theoretical point of view, the 𝛼-plane representation
lends itself in terms of notation and naming to the seamless extension of fuzzy logic
theory (e.g., 𝛼-cuts) and thus it has been the focus of Section 2.4. In practical terms,
the zSlice representation provides the advantage of enabling the intuitive working
in three dimensions (used for GT2 FSs), in particular, for practitioners with a math-
ematical background who are used to working in the x-y-z domain (see Table 2.6).
Thus, in the following sections, we will focus on the zSlice representation intro-
duced in Wagner and Hagras (2008, and 2010).

For illustration purposes,3 Fig. 7.5 details the representation of a GT2 FS based
on the zSlice representation. This figure shows the transition from a standard GT2
FS, (i.e., one with a continuous third dimension) to a zGT2 FS with three zSlices.
In practice, zGT2 FSs are frequently generated directly as a series of zSlices, which
together form the GT2 set.

In the rest of this section we provide a brief introduction to zSlices and
zSlices-based GT2 (zGT2) FSs in Sections 7.3.2.1 and 7.3.2.2, followed by an
in-depth review of the zGT2 FLC in Section 7.3.2.3 and some observations in

y

x

z

(a)

y

x

z

(b)

Figure 7.5 (a) Side view of a GT2 FS, indicating three zLevels on the third dimension and
(b) side view of the zSlices representation of the same set (using three zSlices and indicating
zLevel 0).

3Note that GT2 FSs (zSlice based or not) are not “filled-in,” an impression one may get from figures

such as Fig. 7.5. The set is defined through its primary/secondary membership combinations over its

domain as laid out in Section 2.4 and recapitulated in Section 7.3.2.1. The figures employed in this

chapter and other parts of the book are solely “filled-in” to facilitate the visualization of the GT2 FSs.
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Section 7.3.2.4. Finally, for the reader interested in the implementation of zGT2
FLCs, see the book’s Appendix A.

7.3.2.1 From IT2 FSs to zSlices zSlices are at the core of the zSlice-based
representation for GT2 FSs. As noted in Wagner and Hagras (2010) (see, also,
Section 2.4.1), a zSlice is formed by slicing a GT2 FS in the third dimension (z)
at level zi. This slicing action results in an interval set in the third dimension with

height/depth zi. As such, a zSlice Z̃i is equivalent to an IT2 FS with the excep-
tion that its membership grade 𝜇Z̃i

(x, y) in the third dimension is not fixed to 1 but
is equal to zi where 0≤ zi ≤ 1. Thus, following a vertical slice representation, the

zSlice Z̃i can be written as

Z̃i = ∫x∈X∫y∈yix

zi∕(x, y) (7.18)

At each x value (as shown in Fig. 7.6a), zSlicing creates an interval set (i.e., a
rectangular well) with height zi and support yix

that ranges from li to ri as shown in
Fig. 7.6b. Note that, for notational simplicity, we have dropped x as an index on li
and ri. Further 1≤ i≤ I, where I is number of zSlices (excluding Z̃0) and generally
zi = i/I. Thus Eq. (7.18) can be written as

Z̃i = ∫x∈X∫y∈[li,ri]
zi∕(x, y) (7.19)

Observe that

Z̃0 = ∫x∈X∫y∈y0x

0∕(x, y) (7.20)

Upper membership function (UMF)
Lower membership function (LMF)

l0 l1 l2 l3 l4= r4 r3 r2 r1 r0 y
0

z

1
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Z3

Z2

Z1
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μF(x ′)

x ′0
0

1

y

1 x

y0x ′

y0x ′

Figure 7.6 (a) Front view of a GT2 FS F̃ and (b) vertical slice at x′ of zSlice-based T2 FS
with I= 4 (Wagner and Hagras, 2010; © 2010, IEEE).
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Because all secondary memberships of Z̃0 are zero, it does not contribute anything
to any computations; hence, it is not counted as part of the number of zSlices mak-
ing up a complete zGT2 FS.

7.3.2.2 zSlices-Based GT2 FSs Analogous to the 𝛼-plane representation of
a GT2 FS [see Section 2.4 and specifically Eq. (2.84)], a GT2 FS F̃ is seen to be
equivalent to the collection of an infinite number of zSlices, that is,

F̃ = ∫0≤i≤I
Z̃i I → ∞ (7.21)

In a discrete universe of discourse Eq. (7.21) can be expressed as

F̃ =
I∑

i=0

Z̃i (7.22)

We will be referring to the discrete version of a GT2 FS, in Eq. (7.22), throughout
the rest of this section. It should be noted that the summation sign in Eq. (7.22)
does not denote arithmetic addition but, instead, the union set-theoretic operation,
as discussed just below Eq. (2.2). We have employed the max operation to represent
the union; hence, whenever a y value is attached to more than one zi value, the
maximum of those zi values is chosen and attached to the given y value. Note that,
analogous to Theorem 2.4 expressed for 𝛼-planes, the membership function 𝜇F̃(x′)
at x′ of the zSlices-based GT2 FS F̃ shown Fig. 7.6b can be expressed as

𝜇F̃(x
′) =

I∑
i=1

∑
y∈[li ,ri]

zi∕y (7.23)

where 0≤ i≤ I. It is worth reminding the reader that, at x′, 𝜇F̃(x′) is a type 1 FS.
Having described the structure of both zSlices and zGT2 FSs, we proceed in

the following section to detail the construction of zGT2-based FLCs. For more
detailed information about the nature of and set-theoretic operations on zGTS FSs,
see Section 2.4.2 (Wagner and Hagras, 2008, 2010).

7.3.2.3 Mamdani zSlice-Based GT2 FL Control The structure of a
zSlice-based GT2 FLC (zFLC) shown in Fig. 7.7 is very similar to that of the
IT2 FLC depicted in Fig. 3.4, that is, it is composed of a fuzzifier, an inference
engine, and rule base as well as a type-reducer and defuzzifier. Note that the
type-reducer and defuzzifier have been combined and are shown as a single
defuzzifier component in Fig. 7.7 (and also in Fig. 7.8). The difference between
the FLCs is in the nature of the type-2 sets, which are zSlice-based GT2 FSs in the
case of the zFLC and IT2 FSs in the case of the IT2 FLC.

A zFLC can be expressed directly as the weighted combination of the IT2 FLCs
computed for each zLevel, where the secondary membership of each zLevel acts
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zSlices-based general type-2 FLC
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Figure 7.7 Standard zSlices-based GT2 FLC.
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Figure 7.8 zSlices-based GT2 FLC implemented as a collection of IT2 FLCs, where each
IT2 FLC is associated with a given zLevel and all outputs are fused in the defuzzification
stage of the FLC. Note that darker shading from left to right reflects higher zLevels.

as the weight; thus, all operations of the zFLC can be directly computed using
zSlices-based GT2 FSs as described in Section 2.4.2. Consequently, the same FLC
can be implemented by constructing a collection of IT2 FLCs where each of these
FLCs is associated with a given zLevel. Figure 7.8 provides an illustration of this
process.

zFLCs enable a straightforward defuzzification based on the individual centroids
generated by each “contained IT2 FLC” (see Fig. 7.8). As shown in Section 3.3.2.4,
the centroid CB̃ of an output set B̃ of an IT2 FLC is an IT1 FS defined by its left
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and right end point, that is,

CB̃(x) = 1∕[ul(x), ur(x)] (7.24)

For a given zLevel zi, the centroid of the output set B̃i of the modified IT2 FS can
be expressed as

CB̃i
(x) = zi∕[uli

(x), uri
(x)] (7.25)

Consequently, the overall centroid C of a zFLC can be expressed as the union of
the centroids of all “contained IT2” FLCs (associated with their respective zLevel)
and written as

C(x) =
I⋃

i=1

CB̃i
(x) (7.26)

Figure 7.9 shows an example centroid of a zFLC with three zLevels. This figure
further clarifies the result of the union of the individual IT1 output sets each with a
height of zi.

Considering the centroid in Eq. (7.26), the resulting defuzzified value of a zFLC
can be computed either as the weighted average of the averages of the centroids
CB̃i

(x) of each given zLevel or by computing the centroid defuzzifier for the overall
centroid C(x).

Applying the centroid defuzzifier to the averages of the centroids of each zLevel,
we obtain

yC(x) =
z1

[
ul1

(x)+ur1
(x)

2

]
+ z2

[
ul2

(x)+ur2
(x)

2

]
+ · · · + zIuI(x)

z1 + z2 + · · · + zI
(7.27)

Note that, as mentioned above, we have excluded the values associated the zSlice
Z̃0 because they will not have any impact on the output of the zFLC [when z0 = 0,
its terms in the numerator and denominator of Eq. (7.27) are 0].

0

0.33

0.66

1
z

ul1
ul2

ul3
ur2ur3

ur1=

x

Figure 7.9 Example centroid of a zFLC with I = 3 (Wagner and Hagras, 2010; © 2010,
IEEE).
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From Eq. (7.27), one can easily see that the crisp output of the zFLC is a
weighted average of the outputs of the different zLevel-induced IT2 FLCs (where
the output of a given IT2 FLC for a given zLevel zi is equal to the average of
the left and right end points of the type-reduced set for that zLevel zi, that is,
[ul(x)+ ur(x)]/2, each associated with its specific zLevel. Thus, the output of the
zFLC is an aggregation of the outputs of several IT2 FLCs, each associated with
a specific zLevel. It is worthwhile to repeat here that this also implies that all the
underlying IT2 FLCs can be processed independently and are only recombined
during the defuzzification stage.

To date, due to the relative newness of the 𝛼 -plane/zSlice representation, no
publications have appeared about the automatic (i.e., non-expert-based) design of
Mamdani zFLCs; however, because their structure uses IT2 FSs raised to spe-
cific zLevels, the same approaches to designing IT2 Mamdani FLCs as detailed in
Section 3.6 can be applied, subject to addressing the connection and correct struc-
ture of the individual zSlice-based FSs. In other words, care needs to be taken to
ensure that the FOU of zSlices Z̃i with a higher zLevel is contained within the
zSlices of the lower levels, that is,

FOU(Z̃1) ⊆ FOU(Z̃2) ⊆ · · · ⊆ FOU(Z̃I) (7.28)

The actual rule-based design of a Mamdani zFLC is identical to that of a T1
or IT2 FLC and thus the same approaches for learning it from data, as laid out in
Section 3.6, apply to it.

7.3.2.4 Observations We conclude this section with some observations about
zGT2 FLCs that suggest such FLCs are worthy of further study:

• The fact that the complex operations on GT2 FSs can be reduced to com-
mon IT2 FS operations significantly reduces the design and implementation
complexity and thus should facilitate the use of GT2 FLCs.

• The property of zFLCs that allows the computation of each zLevel indepen-
dently also allows for a high degree of parallel computation. In fact, all zSlices
levels can be computed simultaneously on separate processors followed only
by the very simple defuzzification stage, which is done centrally and the out-
put of which is fed to the controlled system. This offers great potential with
minimal implementation effort and should allow the use of GT2 FSs not only
for FLCs but also for a variety of other applications.

• Current IT2 theory can be reused and only very small modifications are nec-
essary to use current IT2 implementations to compute zFLCs.

• When computing the centroid of a zGT2 FS as done during the type reduction
stage, the resulting type-reduced T1 FS still (as for standard GT2 FLCs) gives
an indicative model of the amount of uncertainty contained within the current
iteration of the zFLC (as shown in Fig. 7.9).
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• The use of zFLCs may let one achieve real-time performance for GT2 FLCs as
a result of significantly simplifying the computational complexity associated
with the deployment of GT2 FLCs.

7.4 WOEI WAN TAN LOOKS INTO THE FUTURE

The preceding chapters have demonstrated that IT2 FL control is a diverse field of
rich promise; however, a central challenge is to increase the number of applications
and users in order to bring IT2 FL control into the mainstream of automation and
control.

Because control theory is firmly grounded in mathematical theory, development
of a set of convenient theoretical tools may bring about new possibilities. The ana-
lytical structures described in Chapters 4 and 5 are a first step.

By now it should be clear to the reader that type reduction presents the major
hurdle to a theoretical framework of IT2 FL control.

Nie and Tan (2008) proposed a type reduction algorithm in which the output
of an IT2 FLC (that is obtained by first aggregating the fired rule output sets by
using the union operation and then type reducing that IT2 FS) is expressed as a
closed-form equation. This has been referred to as the Nie–Tan (NT) method (e.g.,
Mendel, 2013) and is based on the vertical-slice representation of an IT2 FS. Recall
that, in the vertical-slice representation [see Eqs. (2.29) and (2.30)], an IT2 FS
is considered as the union of the vertical slices for all the values of the primary
variable, which are intervals.

The main idea behind the NT method is to average the vertical slices of an IT2
FS B̃ for all the values of the primary variable, producing a T1 FS, and to then
compute the centroid (COG) of this T1 FS. Mathematically, the defuzzified output
of an IT2 FS B̃ using the NT method can be expressed as

uNT(x′) = COG
{

1

2

[
𝜇

B̃

(
u|x′) + 𝜇B̃(u|x′)]} =

∑N

i=1
ui[𝜇B̃

(ui|x′) + 𝜇B̃(ui|x′)]∑N

i=1
[𝜇

B̃
(ui|x′) + 𝜇B̃(ui|x′)]

(7.29)
Mendel and Liu (2013) proved that uNT(x′) is a first-order approximation to the

actual defuzzified value of B̃, mB̃(x′), where

mB̃(x
′) =

cl(B̃|x′) + cr(B̃|x′)
2

(7.30)

and cl(B̃|x′) and cr(B̃|x′) are the left and right end points of the actual centroid
(computed by using KM algorithms). More specifically, they proved

uNT(x′) ≈ mB̃(x
′) + 𝛿(B̃|x′) (7.31)
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where a formula for 𝛿(B̃|x′) is given in their paper but is not needed for the present
section. Examples given in Mendel and Liu (2013) show that 𝛿(B̃|x′) is quite small,
so a very reasonable approximation to mB̃(x′) is uNT(x′).

Compared with the KM method, the advantages of the NT method are the sim-
plicity in its implementation and its closed-form formula that should make theoreti-
cal analyses of an IT2 FLC possible. Such analyses (e.g., like the ones in Chapter 6)
remain to be performed.

Because the NTmethod is only a first-order approximation to the KM approach,
a future research direction is to study the ability of the NT method to handle large
uncertainties for control problems in which there are uncertain environments.
Another possible future direction is to study the characteristics of IT2 FLCs that
use the NT method. The input–output relationship of IT2 FLCs using the NT
method and their robustness may be the focus of such a study.

7.5 JERRY MENDEL LOOKS INTO THE FUTURE

Control occurs in real time, and therefore computational complexity is a very
important issue for it. For T2 FLCs to be used in real-world applications they
must be simplified. Ideally, the simplified T2 FLC should also lend itself to
mathematical analyses.

7.5.1 IT2 FLC

7.5.1.1 Simplified Architectures Section 7.4 has already described an
important simplification for type reduction in an IT2 FLC, the Nie–Tan method.
That method is presently limited by its requirement that the fired rule output
sets must be aggregated (by, e.g., using the union operation) so as to obtain a
composite IT2 FS. In many FLCs such an aggregation is avoided because it is
time consuming. That is the main reason for using COS type reduction instead of
centroid type reduction.

The m-nTSK IT2 FLC, described in Chapter 6, is another way to greatly simplify
an FLC. It replaces COS type reduction by the simpler formula:

umn(x′) ≡ m

∑M

s=1
usf

s(x′)∑M

s=1
f s(x′)

+ n

∑M

s=1
usf

s
(x′)∑M

s=1
f
s
(x′)

(7.32)

One of the important design features of Eq. (7.32) is its two design parame-
ters (degrees of freedom) m and n. Presently, the Nie–Tan method does not
have comparable design degrees of freedom; however, there is an interest-
ing connection between the Nie–Tan and m-n TSK IT2 FLCs, as explained
next.
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It is straightforward (Mendel, 2013), by using some simple algebra, to reexpress
uNT(x′) in Eq. (7.29) as

uNT(x′) =

∑N

i=1
𝜇

B̃
(ui|x′)∑N

i=1
[𝜇

B̃
(ui|x′) + 𝜇B̃(ui|x′)]

×

∑N

i=1
ui𝜇B̃

(ui|x′)∑N

i=1
𝜇

B̃
(ui|x′)

+

∑N

i=1
𝜇B̃(ui|x′)∑N

i=1
[𝜇

B̃
(ui|x′) + 𝜇B̃(ui|x′)]

×

∑N

i=1
ui𝜇B̃(ui|x′)∑N

i=1
𝜇B̃(ui|x′)

≡ m′
B̃
(x′)

∑N

i=1
ui𝜇B̃

(ui|x′)∑N

i=1
𝜇

B̃
(ui|x′)

+ n′
B̃
(x′)

∑N

i=1
ui𝜇B̃(ui|x′)∑N

i=1
𝜇B̃(ui|x′)

(7.33)

where

m′
B̃
(x′) =

∑N

i=1
𝜇

B̃
(ui|x′)∑N

i=1
[𝜇

B̃
(ui|x′) + 𝜇B̃(ui|x′)] (7.34)

n′
B̃
(x′) =

∑N

i=1
𝜇B̃(ui|x′)∑N

i=1
[𝜇

B̃
(ui|x′) + 𝜇B̃(ui|x′)] (7.35)

Observe that Eq. (7.33) resembles Eq. (7.32), although m and n in Eq. (7.32) are
arbitrary constants, whereas m′

B̃
(x′) and n′

B̃
(x′) in Eq. (7.33) are not, that is, they

are computed by means of Eqs. (7.34) and (7.35).
If, hypothetically, Eq. (7.32) were to be used for centroid TR, then it could be

re-expressed as (Mendel, 2013)

Cmn(x′) = m

∑N

i=1
ui𝜇B̃

(ui|x′)∑N

i=1
𝜇

B̃
(ui|x′)

+ n

∑N

i=1
ui𝜇B̃(ui|x′)∑N

i=1
𝜇B̃(ui|x′)

(7.36)

Comparing Eqs. (7.33) and (7.36), we see they are the same when m = m′
B̃

and

n = n′
B̃
.This provides an interesting new connection between the m-n IT2TSK FLC

formula and the Nie–Tan formula, a connection that needs further strengthening
(research) since the m-n IT2 TSK FLC formula has not actually been suggested
before as a way to replace the centroid computation when an FOU is present, and
the Nie–Tan formula has not actually been suggested before as a way to replace a
TR computation when an FOU is not present.
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7.5.1.2 Continuous IT2 FLC Recently, Wu and Mendel (2011) examined the
continuity of T1 and IT2 FLCs using rigorous mathematics. They reached the fol-
lowing guidelines for practitioners who want to design continuous IT2 FLCs:

1. To guarantee a continuous input–output mapping regardless of which type
reduction and defuzzification method is used, Gaussian IT2 FSs should be
employed for all rule antecedents.

2. When triangular and/or trapezoidal IT2 FSs are used, to guarantee a contin-
uous input–output mapping, the LMFs should cover every input domain for
all rule antecedents. This implies that the UMFs must also cover every input
domain.

The fact that antecedent LMFs cannot have gaps between them is a some-
what surprising result, and, unless Gaussian MFs are used during an optimal
design of an FLC, this imposes additional constraints on optimal designs when
piecewise-linear antecedent LMFs are used. How such constraints can be enforced
during designs of optimal FLCs, as described in Section 3.6, is an open area for
research.

7.5.2 GT2 FLC

7.5.2.1 Simplified Architectures Both the Nie–Tan and m-n IT2 FLCs can
be extended to GT2 FLCs.

The gist of how the NT method can be used for a GT2 FLS is (Mendel, 2014):

1. For each of the M rules, compute its firing interval Fs
𝛼(x′) for level 𝛼, that is,

compute

Fs
𝛼(x′) ≡ [f s

𝛼
(x′), f

s

𝛼(x′)] (7.37)

where f s
𝛼
(x′) and f

s

𝛼(x′) are computed using 𝛼-cuts in Eqs. (3.51) and (3.52),

respectively.

2. For each of the M rules compute FOU(B̃s
𝛼), that is,

FOU(B̃s
𝛼) = [𝜇

B̃s𝛼
(u|x′), 𝜇B̃s

𝛼
(u|x′)] ∀u ∈ U (7.38)

where 𝜇
B̃s
𝛼

(u|x′) and 𝜇B̃s
𝛼
(u|x′) are computed using 𝛼-cuts in Eq. (3.53).

3. Compute the aggregated output horizontal slice FOU(B̃𝛼), that is,

FOU(B̃𝛼) = [𝜇
B̃𝛼

(u|x′), 𝜇B̃𝛼
(u|x′)] ∀u ∈ U (7.39)

where 𝜇
B̃𝛼

(u|x′) and 𝜇B̃𝛼
(u|x′) are computed using 𝛼-cuts in Eqs. (3.56) and

(3.57), respectively.
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4. Compute 𝛼 - level NT outputs, uNT,𝛼(x′) (𝛼 = 𝛼1, …, 𝛼k) by using Eq. (7.29)
at each 𝛼-level.

5. Defuzzify the uNT,𝛼(x′) (𝛼 = 𝛼1, …, 𝛼k) by creating a spike of amplitude 𝛼j for
uNT,𝛼j

(x′), and computing uNT(x′) as

uNT(x′) =

∑k

j=1
𝛼juNT,𝛼j

(x′)∑k

j=1
𝛼j

(7.40)

The gist of how the m-n TSK architecture can be used for a TSK GT2 FLS is
(Mendel, 2014):

1. For each of the M rules, compute its firing interval Fs
𝛼(x′) for level 𝛼, exactly

as in Eq. (7.37).

2. Decide if the same or different values of m, n, and us will be used for each 𝛼.

3. Compute 𝛼 - level m-n outputs, umn,𝛼j
(x′)(𝛼 = 𝛼1, …, 𝛼k) by using Eq. (7.32)

at each 𝛼-level.

4. Defuzzify the umn,𝛼j
(x′) (𝛼 = 𝛼1, …, 𝛼k) by creating a spike of amplitude 𝛼j

for umn,𝛼j
(x′), and computing umn(x′), as

umn(x′) =

∑k

j=1
𝛼jumn,𝛼j

(x′)∑k

j=1
𝛼j

(7.41)

Doing what has just been proposed, as well as studying whether or not Eqs.
(7.40) and/or (7.41) lend themselves to mathematical analyses, such as the analyses
given in Chapter 6, remains to be explored.

7.5.2.2 Parameterization4 We have seen (Chapter 2) that a GT2 FS can be
represented in four different ways: points, wavy slices, zSlices (i.e., horizontal
slices), and vertical slices. While each of the latter three plays an important role for
theoretical aspects of GT2 FSs, we need to know which of these representations
should be used during an optimal design of a GT2 FLC.

The basic premise of this subsection is that one should use a parsimonious para-
metric representation of a GT2 FS during an optimal design of a GT2 FLC. Such
a representation is one that is described by as few parameters as possible.

Clearly, the point representation of a GT2 FS is not parsimonious because it is
not even a parametric representation. Similarly, the wavy-slice representation in
which the wavy slices must be enumerated from all of the points of the GT2 FS is
also a non-parametric representation. Neither of these representations is useful for
an optimal design of a GT2 FLC.

4The material in this section is taken from Mendel (2014).
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The horizontal-slice representation needs to be made parametric for it to be
useful for an optimal design of a GT2 FLC. This representation requires choos-
ing the number of horizontal slices and then parameterizing each of them. If, for
example, each horizontal slice needs nh parameters to describe it (i.e., assume that
all of the horizontal slices have the same shape, and a higher horizontal slice is a
squished version of the one just below it), and there are k horizontal slices, then
this representation will require knh parameters, which is not parsimonious. Addi-
tionally, a change in the numerical value of k from k1 to k2, where k2 > k1, leads to
(k2 − k1)nh additional parameters. Finally, there does not seem to be a simple way
to map (squish) a horizontal slice at level 𝛼1 into a horizontal slice at level 𝛼2, for
example, I do not know of a simple way to shrink the horizontal slice at level 𝛼1

into a horizontal slice at level 𝛼2 such that the latter horizontal slice is contained
(nested) within the former horizontal slice [see Eq. (7.28)], as would be the case
if, for example, all of the secondary MFs were triangles or trapezoids. Even if one
could find such a mathematical transformation, it would have to be parsimonious,
and then the quantification of the nesting of successive horizontal slices would have
to be included as constraints during the optimization of a performance objective
function as part of the optimal design of a GT2 FLC. Such a constrained optimiza-
tion problem (although it does not yet exist) would be very challenging to solve,
to say the least. Based on these arguments I conclude (somewhat surprisingly) that
the horizontal-slice representation of a GT2 FS is not useful for an optimal design
of a GT2 FLC.

This leaves only the vertical-slice representation of a GT2 FS. I will now demon-
strate that this is a very flexible and parsimonious representation of such a FS.

There can be different ways to parameterize vertical slices. The worst way to do
this is to parameterize each of them separately; such a representation would suffer
from the same nonparsimony that the horizontal-slice representation does.

My suggestion for parameterizing the vertical-slice representation of a GT2 FS
is to: (1) parameterize its FOU exactly as one presently parameterizes the FOU
of an IT2 FS, and (2) parameterize the secondary MFs by choosing a fairly sim-
ple function that introduces only one new parameter.5 Because the secondary MFs
are vertical slices, they are always anchored on the already parameterized FOU.
Examples of such secondary MFSs are:

1. Triangle The base of each triangle equals 𝜇Ã(x) − 𝜇
Ã
(x), and its apex loca-

tion,Apex(x), is parameterized as (w∈ [0, 1]) (Liu, 2008; Mendel et al., 2009)

Apex(x) = 𝜇
Ã
(x) + w[𝜇Ã(x) − 𝜇

Ã
(x)] (7.42)

When w= 0, the secondary MF is a right triangle whose right angle is per-
pendicular to 𝜇

Ã
(x); when w = 1

2
, the secondary MF is an isosceles triangle;

5Begin with secondary MFs that can be described by using only one new parameter; if performance

is not acceptable, then use secondary MFs that can be described by using two new parameters; and so

forth.
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and, when w= 1, the secondary MF is a right triangle whose right angle is
perpendicular to 𝜇Ã(x). And w is treated as a design parameter, but it is the
same for all of the vertical slices.

2. Symmetrical Trapezoid The base of each trapezoid equals 𝜇Ã(x) − 𝜇
Ã
(x) and

its top is defined by left and right end points, EPl(x) and EPr(x), which are
parameterized as (w∈ [0, 1]) (Liu, 2008; Mendel et al., 2009)

EPl(x) = 𝜇
Ã
(x) + 1

2
w[𝜇Ã(x) − 𝜇

Ã
(x)] (7.43)

EPr(x) = 𝜇Ã(x) −
1

2
w[𝜇Ã(x) − 𝜇

Ã
(x)] (7.44)

When w= 0, the trapezoid reduces to a square well, and the GT2 FS reduces
to an IT2 FS; and, when w= 1, EPl(x)=EPr(x), so that the trapezoid reduces
to an isosceles triangle. Again w is treated as a design parameter, but it is the
same for all of the vertical slices.

Another choice for a secondary MF is a nonsymmetrical trapezoid; however, it
requires two parameters to define it, and so we leave its formulas to the reader [see
Mendel et al. (2009) for an example].

Examples of the number of parameters that would have to be optimized during
an optimal design of a GT2 FLC, for each of its GT2 FSs, are:

1. FOU is Gaussian with uncertain mean m∈ [m1,m2] and/or standard
deviation 𝜎 ∈ [𝜎1, 𝜎2], and triangle or symmetrical trapezoid secondary
MFs: four or five parameters per GT2 FS, namely 𝜃 = {m1,m2, 𝜎,w}, or
𝜃 = {m, 𝜎1, 𝜎2,w}, or 𝜃 = {m1,m2, 𝜎1, 𝜎2,w}.

2. FOU is trapezoidal with a normal (not-necessarily symmetrical) trapezoid
UMF {a, b, c, d} and a subnormal (not-necessarily symmetrical) triangle
LMF {e, f, g, h} [h is the height of the LMF; if the LMF is normal,
then h= 1 and it is described by {e, f, g}], and triangle or symmetrical
trapezoid secondary MFs: nine or eight parameters per GT2 FS, namely
𝜃 = {a, b, c, d, e, f, g, h,w} or 𝜃 = {a, b, c, d, e, f, g,w}.

Clearly, a Gaussian FOU is more parsimonious than a trapezoidal FOU.6

My conclusion is that for the optimal design of a GT2 FLC one should use the
vertical-slice representation of its GT2 FSs.

7.5.2.3 Performance Improvement7 We have seen, in Section 3.6.2, that
sometimes the parameters of an IT2 FLC are optimized (tuned, learned) during

6Gaussian FOUs are also necessary for continuous GT2 FLCs (see Section 7.5.1.2).
7The material in this section is taken from Mendel (2014).
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its design phase.8 The optimized parameters are then fixed during its operational
phase, unless continued adaptation is required, in which case online changes to
parameters take place. Consequently, the parameters of a GT2 FLC can also be opti-
mized during its design phase. The parameters of a GT2 FLC are in the antecedents,
consequent, and (possibly) defuzzifier.

Recall, from Section 3.6.2, that during the optimal design of a GT2 FLC one sets
up a mathematical objective function, J(𝛟), that depends upon the design param-
eters, 𝛟. For a GT2 FLC, the elements of 𝛟 include all of the antecedent and
consequent MF parameters as well as any defuzzification parameters (if there are
any), and J(𝛟) is again a nonlinear function of 𝛟 and so some sort of mathematical
programming approach has to be used to optimize it.

If computing derivatives was very difficult for IT2 FLCs, it will be consider-
ably more difficult for GT2 FLCs. This is because, not only must such derivatives
be computed for each horizontal slice, where the same secondary parameter (w)
appears in all of the horizontal slices, but they must also be computed for the
defuzzification method, in which the horizontal slices become coupled.

In conclusion, my recommendation (as it was for IT2 FLCs) is not to use
gradient-based optimization algorithms for the designs of GT2 FLCs.

I maintain that using GT2 FSs in a FLC has the potential to provide better (and
certainly no worse) performance for an FLC than using IT2 FSs. For this to be
true one needs to use an optimization method that ensures that this happens. Using
QPSO (see Section 3.6.2) lets us do this by using the following design procedure.

1. Design a T1 FLC by optimizing its parameters using QPSO.

2. Design an IT2 FLC by optimizing its parameters using QPSO in which one
particle is associated with the just designed T1 FLC.

3. Design a GT2 FLC by optimizing its parameters using QPSO in which one
particle is associated with the just designed IT2 FLC.

Mendel (2014) has proven that by virtue of the QPSO algorithm, the perfor-
mance of an optimized GT2 FLC cannot be worse than that of an optimized IT2
FLC. This does not mean that the performance of the optimized GT2 FLC will
be significantly better than that of the optimized IT2 FLC. As for the case of the
IT2 FLC, there is no analysis that is available to date that focuses on such relative
performance improvements.

Example 7.5 In step 3 of the above design procedure, one particle is associated
with a just designed IT2 FLC. Suppose, for example, that the GT2 FLC is Mam-
dani + COS TR, the antecedent and consequent FOUs are Gaussian with uncertain
mean m∈ [m1,m2], certain standard deviation 𝜎, and have symmetrical trapezoid
secondary MFs, and Eq. (7.27) is used for defuzzification.The structure of a particle

8In this Section I am focusing only on the optimization of MF parameters. Choosing the number of

rules (M), MF shapes and t-norms are other important design issues but are not covered herein.
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for such a GT2 FLC is9
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The IT2 particle must be of the same length as this GT2 particle, begins with
Eq. (7.45), and can be expressed as

𝛟IT2 = col(m1
11
,m1

12
, 𝜎1

1
, 0, …,m1

p1
,m1

p2
, 𝜎1

p , 0,mc1
1
,mc1

2
, 𝜎c1

p, 0;
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Rule 1

…;

mM
11
,mM

12
, 𝜎M

1
, 0, …,mM

p1
,mM

p2
, 𝜎M

p , 0,mcM
1
,mcM

2
, 𝜎cM

p , 0
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Rule M

) (7.46)

Observe in Eq. (7.46), that:

• All of the MF parameters are taken from the optimized IT2 FLC design.

• By setting all of the secondary MF w parameters equal to 0, an IT2 FS is
embedded into a GT2 FS (the secondary MFs become rectangular wells).

• In this way it is straightforward to embed an IT2 particle into a GT2 particle.

Optimally designing GT2 FLCs for guaranteed control system performance
improvement is an important area for future research.

9In order to distinguish between the antecedent and consequent parameters, the consequent parameters

are identified by using an additional letter c, for example, mc, 𝜎c and wc.



APPENDIX A

T2 FLC Software: From Type-1 to
zSlices-Based General Type-2 FLCs

A.1 INTRODUCTION

This appendix is aimed at demonstrating the transition from T1 to IT2 FLCs and
finally to zGT2 FLCs in terms of actual software implementations of the FLCs.
In order to make it as useful as possible, this appendix is written as a tutorial and
employs the freely available software framework Juzzy (Wagner, 2013) (available
at http://juzzy.wagnerweb.net) written in Java that supports T1, IT2, and GT2 FLCs.
Some of the relevant source code is included directly in the tutorial. It is expected
that this will be helpful to the reader for the implementation of FLCs in Java and
other programming languages, in particular those that are object oriented.

Section A.2 briefly reviews the details of the sample FLC that is developed
throughout the tutorial, followed by individual subsections on the T1, IT2, and GT2
FLC implementations.

A.2 FLC FOR RIGHT-EDGE FOLLOWING

This tutorial is set around the same robotic application as detailed in Example 3.3
in Chapter 3, that is, the implementation of a right-edge (wall) following behavior.
In control terms, we have a two-input (front and back sonar sensors on the right
side of the robot) and single-output (steering angle) control problem. Both sonar
sensors are modeled as variables with domain [0, 500] (e.g., in millimeters), and
the steering angle is modeled as a variable with domain [−180, 180] (degrees).

In the sections below, we show and discuss the details of the FLC implementa-
tions for this problem based on T1, IT2, and zSlices-based GT2 FLCs. In particular,
we highlight the similarities and differences as transitions are made from the T1 to
the GT2 case and provide suggestions for a straightforward implementation of the
FLCs and some general FLC design guidelines. Finally, we provide a brief discus-
sion of the different FLCs and their outputs.

Note that we are not focusing on “control performance” or developing the “best”
controller but on illustrating the different kinds of FLCs. In this context, the fuzzy

Introduction to Type-2 Fuzzy Logic Control: Theory and Applications, First Edition.

Jerry M. Mendel, Hani Hagras, Woei-Wan Tan, William W. Melek, and Hao Ying.
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sets and the rule bases used are only examples and no optimization techniques have
been applied to them. In a real application it is expected that the FLC would be
designed so as to achieve desirable control system performance properties, using
either expert knowledge, consensus, or one of the training techniques discussed
earlier, for example, BP, QPSO, or GA.

A.3 TYPE-1 FLC SOFTWARE

In order to set up the T1 FLC we take a step-by-step approach that is later mirrored
in the IT2 and zGT2 FLCs. Each step is detailed below.

A.3.1 Define and Set Up T1 FLC Inputs

We define both of the inputs (right-front and right-back sonar sensors) as numbers
between 0 and 500. Figure A.1 depicts the definition of input objects in Java using
the Juzzy software package. The input objects serve a twofold purpose: They define
the domain for each input, and they allow one to directly associate the antecedent
and the consequent objects of the rules, as is illustrated below.

A.3.2 Define T1 FSs That Quantify Each Variable

In order to maintain a low level of complexity in the fuzzy system (for illustration
purposes), we model both sonar inputs using two trapezoidal fuzzy sets, corre-
sponding to the linguistic labels Near and Far. Additionally, the steering angle
output is modeled using three trapezoidal fuzzy sets corresponding to the linguistic
labelsLeft,Zero, and Right. All MFs/FSs are shown in Figs. A.2–A.4, respectively.

Figure A.5 illustrates the setup of the T1 FSs in Java, based on the Juzzy fuzzy
systems package. It shows how the individual fuzzy sets, shown in Figs. A.2–A.4,
are created by the user, providing a label for each set as well as the four parameters
required to define a trapezoidal membership function for a type 1 fuzzy set.

Note that the fuzzy sets for the right-front sensor (Fig. A.2) differ from those
designed for the back sensor (Fig. A.3) because we are modeling the fact that the
front sensor points at the wall at a < 90∘ angle, whereas the back sensor is perpen-
dicular to the wall. Note further that the sets in Fig. A.4 do not overlap because they
are output sets that are meant to capture the different ranges of the steering-angle
output domain, that is, the labels Left, Zero, and Right.

//Define the inputs

rfs = new input (”Right Front Sonar”, new Tuple(0,500));

rbs = new input (”Right Back Sonar”, new Tuple(0,500));

Figure A.1 Defining FLC inputs in Java using the Juzzy package.
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Figure A.2 Trapezoidal T1 FSs for Near and Far for the right-front sonar (RFS).
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Figure A.3 Trapezoidal T1 FSs sets for Near and Far for the right-back sonar (RBS).
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Figure A.4 Trapezoidal T1 FSs for Left, Zero, and Right steering angle.

A.3.3 Define Logical Antecedents and Consequents for the FL Rules

In preparation for designing the rule base for the T1 FLC, the previously cre-
ated MFs are associated with antecedent and consequent terms. Note that each
antecedent is labeled (the labels are later used to create a list of rules for the output)
and that all antecedents are associated with the respective input defined previously
(i.e., right front and back sonars). The source code for this step is illustrated in
Fig. A.6.

A.3.4 Define Rule Base of T1 FLC

Having set up the antecedents and consequents of the T1 FLC, it is straightforward
to create a new rule base and to add rules. Figure A.7 illustrates the set up of a new
rule base, one with four rules, as well as the actual definition and inclusion of each
rule. Note how the antecedents of the rules are specified as an array, followed by
the respective consequent for each rule.

A rule base can be printed using the rule base object’s toString() method. The
resulting printout (which is human readable) for the rule base created in Fig. A.7 is
given in Fig. A.8.

After specifying the rule base, the T1 FLC is ready for use. The control surface
for the T1 FLC, based on minimum inference, combining all individual rule out-
puts through the union operation and applying centroid defuzzification, is shown in
Fig. A.9 (both inputs are discretized into 100 steps). The method employed using
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T1MF_Trapezoidal rfsNearMF = new T1MF_Trapezoidal("MF for Near distance of the RFS", new double[]{0.0, 0.0, 125.0, 225.0});
T1MF_Trapezoidal rfsFarMF = new T1MF_Trapezoidal("MF for Far distance for the RFS", new double[]{125.0, 225.0, 500.0, 500.0});

T1MF_Trapezoidal rbsNearMF = new T1MF_Trapezoidal("MF for Near distance of the RBS", new double[]{0.0, 0.0, 175.0, 275.0});
T1MF_Trapezoidal rbsFarMF = new T1MF_Trapezoidal("MF for Far distance for the RBS", new double[]{175.0, 275.0, 500.0, 500.0});

T1MF_Trapezoidal leftMF = new T1MF_Trapezoidal("MF for Left Steering Angle", new double[]{-110.0, -87.5, -62.5, -40.0});
T1MF_Trapezoidal zeroMF = new T1MF_Trapezoidal("MF for Zero Steering Angle", new double[]{-20.0, 2.5, 27.5, 50.0});
T1MF_Trapezoidal rightMF = new T1MF_Trapezoidal("MF for Right Steering Angle", new double[]{70.0, 92.5, 107.5, 140.0});

Figure A.5 Source code snippet showing the setup of the FSs/MFs for the T1 FLC.
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T1_Antecedent rfsNear = new T1_Antecedent("Near distance of the RFS",rfsNearMF, rfs);
T1_Antecedent rfsFar = new T1_Antecedent("Far distance of the RFS",rfsFarMF, rfs);

T1_Antecedent rbsNear = new T1_Antecedent("Near distance of the RBS",rbsNearMF, rbs);
T1_Antecedent rbsFar = new T1_Antecedent("Far distance of the RBS",rbsFarMF, rbs);

T1_Consequent left = new T1_Consequent("Left", leftMF);
T1_Consequent zero = new T1_Consequent("Zero", zeroMF);
T1_Consequent right = new T1_Consequent("Right", rightMF);

Figure A.6 Definitions of antecedent and consequent terms in Juzzy.
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rulebase = new T1_Rulebase(4);
rulebase.addRule(new T1_Rule(new T1_Antecedent[]{rfsNear, rbsNear}, left));
rulebase.addRule(new T1_Rule(new T1_Antecedent[]{rfsNear, rbsFar}, left));
rulebase.addRule(new T1_Rule(new T1_Antecedent[]{rfsFar, rbsNear}, zero));
rulebase.addRule(new T1_Rule(new T1_Antecedent[]{rfsFar, rbsFar}, right));

Figure A.7 Creation of a new T1 rule base in Juzzy.

IF Near distance of the RFS AND Near distance of the RBS THEN Left

IF Near distance of the RFS AND Far distance of the RBS THEN Left

IF Far distance of the RFS AND Near distance of the RBS THEN Zero

IF Far distance of the RFS AND Far distance of the RBS THEN Right

Figure A.8 Printout of T1 FLC rule base (the structure of this printout can be changed
within the Juzzy software to accommodate other rule formats, such as, for example, “If
distance of the RFS is Near AND distance of the RBS is Near THEN Output is Left”).
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Figure A.9 Control surface for the T1 FLC.

the Juzzy framework to create the control surface is included in Fig. A.10. Note that
the control surface in Fig. A.9 is rather “angular,” that is, the control signal changes
abruptly at different points over the control surface. A smoother control surface is
generally expected for T2 FLCs, and this expectation will be demonstrated in the
subsequent sections.

A.4 INTERVAL T2 FLC SOFTWARE

Similar to the just described approach for constructing a T1 FLC, in this section we
proceed to set up an IT2 Mamdani FLC step by step, highlighting in particular the
similarities and differences between both kinds of FLCs.
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private void plotControlSurface(boolean useCentroidDefuzzification, int input1Discs, int input2Discs)
{

{

{

{

output = rulebase.evaluate(1, 100);

z[currentY][currentX] = output;
output = rulebase.evaluate(0, 0);

{

}

}

}
}

}

double output;
double[] x = new double[input1Discs];
double[] y = new double[input2Discs];
double[][] z = new double[y.length][x.length];
double incrX, incrY;
incrX = rfs.getDomain().getSize()/(input1Discs-1.0);
incrY = rbs.getDomain().getSize()/(input2Discs-1.0);

//first, get the discretisation values
for(int currentX=0; currentX<input1Discs; currentX++)

for(int currentX=0; currentX<input1Discs; currentX++)

for(int currentY=0; currentY<input2Discs; currentY++)

x[currentX] = currentX * incrX;

for(int currentY=0; currentY<input2Discs; currentY++)

y[currentY] = currentY * incrY;

rfs.setInput(x[currentX]); //set the front sonar input

if(useCentroidDefuzzification)
rbs.setInput(y[currentY]); //set the back sonar input

else

//now do the plotting (relies on JMathPlot library: http://code.google.com/p/jmathplot/ (Sep. 2012))
JMathPlotter plotter = new JMathPlotter(17, 17, 14);
plotter.plotControlSurface("Type-1 Control Surface",

plotter.show("Type-1 Fuzzy Logic System Control Surface for Robot Control Example");
new String[]{rfs.getName(), rbs.getName(), “Steering Angle"}, x, y, z, new Tuple(-180,180.0));

Figure A.10 Code to execute the FLC with the purpose of generating the control surface.

http://code.google.com/p/jmathplot
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A.4.1 Define and Set Up FLC Inputs

Because the actual inputs to the IT2 FLC are identical to those used in the T1 FLC
case, the setup of the IT2 FLC inputs is identical to that of the T1 case.

A.4.2 Define IT2 FSs That Quantify Each Variable

All the sets in our IT2 FLC are IT2 FSs, which are based on blurred (see Section
3.6.1) T1 FSs. Consequently, we chose to model the inputs as trapezoidal IT2 FSs,
as shown in Figs. A.11 and A.12. Additionally, the steering angle is modeled using
three trapezoidal fuzzy sets, as shown in Fig. A.13. The rule base of the IT2 FLC
is identical to that of the T1 FLC because the structure of a rule base does not
change; it is only the FSs that are used to model the antecedents and consequents
that change.

Figure A.14 illustrates the setup of the IT2 FSs in Java, based on the Juzzy fuzzy
systems package. Observe how each IT2 FS is defined by using both an upper and
a lower T1 MF.

A.4.3 Define Logical Antecedents and Consequents for the FL Rules

After all FSs have been defined, all of them are associated with antecedents and
consequents (as in the T1 case) in preparation for the construction of FL rules.
Figure A.15 shows the construction of the respective antecedents and consequents
in Juzzy for the IT2 FLC.

A.4.4 Define Rule Base of the IT2 FLC

The example four-rule rule base is specified as for the T1 case, and is shown in
Fig. A.16.
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Figure A.11 Trapezoidal IT2 FSs for Near and Far for the right-front sonar (RFS).
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Figure A.12 Trapezoidal IT2 FSs for Near and Far for the right-back sonar (RBS).
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Figure A.13 Trapezoidal IT2 FSs for Left, Zero, and Right steering angle.

Having specified the rule base, the resulting IT2 FLC is ready for use. For
illustrative purposes, the resulting rule base that uses minimum inference, KM
center-of-sets type reduction [Eqs. (3.64)–(3.66)] and 100 discretization steps
for both inputs is shown in Fig. A.17. The method employed using the Juzzy
framework to create the control surface is included in Fig. A.18.

Comparing the IT2 FLC control surface (Fig. A.17) with that of the T1 FLC
control surface (Fig. A.9) highlights the effects of using IT2 FSs, that is, the control
surface of the IT2 FLC seems smoother overall than that of the T1 FLC. In other
words, the IT2 FL control output changes less abruptly as the input measurements
to the FLC change.
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T1MF_Trapezoidal rfsNearUMF = new T1MF_Trapezoidal("Upper MF for Near distance of the RFS",new double[]{0.0, 0.0, 150.0, 250.0});
T1MF_Trapezoidal rfsNearLMF = new T1MF_Trapezoidal("Lower MF for Near distance of the RFS",new double[]{0.0, 0.0, 100.0, 200.0});
IntervalT2MF_Trapezoidal rfsNearMF = new IntervalT2MF_Trapezoidal("IT2MF for Near distance of the RFS",rfsNearUMF,rfsNearLMF);

T1MF_Trapezoidal rfsFarUMF = new T1MF_Trapezoidal("Upper MF for Far distance of the RFS",new double[]{100.0, 200.0, 500.0, 500.0});
T1MF_Trapezoidal rfsFarLMF = new T1MF_Trapezoidal("Lower MF for Far distance of the RFS",new double[]{150.0, 250.0, 500.0, 500.0});
IntervalT2MF_Trapezoidal rfsFarMF = new IntervalT2MF_Trapezoidal("IT2MF for Far distance of the RFS",rfsFarUMF,rfsFarLMF);

T1MF_Trapezoidal rfsFarUMF = new T1MF_Trapezoidal("Upper MF for Far distance of the RBS",new double[]{150.0, 250.0, 500.0, 500.0});
T1MF_Trapezoidal rfsFarLMF = new T1MF_Trapezoidal("Lower MF for Far distance of the RBS",new double[]{200.0, 300.0, 500.0, 500.0});
IntervalT2MF_Trapezoidal rbsFarMF = new IntervalT2MF_Trapezoidal("IT2MF for Far distance of the RBS",rbsFarUMF,rbsFarLMF);

T1MF_Trapezoidal zeroUMF = new T1MF_Trapezoidal("Upper MF for Zero Steering Angle",new double[]{-30.0, -10.0, 40.0, 60.0});
T1MF_Trapezoidal zeroLMF = new T1MF_Trapezoidal("Lower MF for Zero Steering Angle",new double[]{-15.0, 15.0, 15.0, 40.0});
IntervalT2MF_Trapezoidal zeroMF = new IntervalT2MF_Trapezoidal("IT2MF for Zero Steering Angle",zeroUMF,zeroLMF);

T1MF_Trapezoidal rbsNearUMF = new T1MF_Trapezoidal("Upper MF for Near distance of the RBS",new double[]{0.0, 0.0, 200.0, 300.0});
T1MF_Trapezoidal rbsNearLMF = new T1MF_Trapezoidal("Lower MF for Near distance of the RBS",new double[]{0.0, 0.0, 150.0, 250.0});
IntervalT2MF_Trapezoidal rbsNearMF = new IntervalT2MF_Trapezoidal("IT2MF for Near distance of the RBS",rbsNearUMF,rbsNearLMF);

T1MF_Trapezoidal leftUMF = new T1MF_Trapezoidal("Upper MF for Left Steering Angle",new double[]{-120.0, -100.0, -50.0, -30.0});
T1MF_Trapezoidal leftLMF = new T1MF_Trapezoidal("Lower MF for Left Steering Angle",new double[]{-100.0, -75.0, -75.0, -50.0});
IntervalT2MF_Trapezoidal leftMF = new IntervalT2MF_Trapezoidal("IT2MF for Left Steering Angle",leftUMF,leftLMF);

T1MF_Trapezoidal rightUMF = new T1MF_Trapezoidal("Upper MF for Right Steering Angle",new double[]{60.0, 80.0, 130.0, 150.0});
T1MF_Trapezoidal rightLMF = new T1MF_Trapezoidal("Lower MF for Right Steering Angle",new double[]{80.0, 105.0, 105.0, 130.0});
IntervalT2MF_Trapezoidal rightMF = new IntervalT2MF_Trapezoidal("IT2MF for Right Steering Angle",rightUMF,rightLMF);

Figure A.14 Definitions of IT2 FSs in Juzzy; each IT2 FS is based on an upper and a lower T1 MF.
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IT2_Antecedent rfsNear = new IT2_Antecedent("Near distance of the RFS",rfsNearMF, rfs);
IT2_Antecedent rfsFar = new IT2_Antecedent("Far distance of the RFS",rfsFarMF, rfs);

IT2_Antecedent rbsNear = new IT2_Antecedent("Near distance of the RBS",rbsNearMF, rbs);
IT2_Antecedent rbsFar = new IT2_Antecedent("Far distance of the RBS",rbsFarMF, rbs);

IT2_Consequent left = new IT2_Consequent("Left", leftMF);
IT2_Consequent zero = new IT2_Consequent("Zero", zeroMF);
IT2_Consequent right = new IT2_Consequent("Right", rightMF);

Figure A.15 Antecedent and consequent definitions for the IT2 FLC in Juzzy.
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rulebase = new IT2_Rulebase(4);
rulebase.addRule(new IT2_Rule(new IT2_Antecedent[]{rfsNear, rbsNear}, left));
rulebase.addRule(new IT2_Rule(new IT2_Antecedent[]{rfsNear, rbsFar}, left));
rulebase.addRule(new IT2_Rule(new IT2_Antecedent[]{rfsFar, rbsNear}, zero));
rulebase.addRule(new IT2_Rule(new IT2_Antecedent[]{rfsFar, rbsFar}, right));

Figure A.16 Creation of a new IT2 rule base in Juzzy.
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Figure A.17 Control surface for the IT2 FLC.

A.5 zSLICES-BASED GENERAL TYPE-2 FLC SOFTWARE

Building directly on the just-described implementation of an IT2 FLC, we pro-
ceed in this section to design and implement a zSlices-based GT2 FLC. In order to
maintain tractability of the different zLevels, especially in the figures, we use only
four zLevels for the zFLC; hence, all zSlices-based sets will be modeled using four
zSlices. In the rest of this section, we provide step-by-step details for the imple-
mentation of the zFLC, analogous to previous sections on the T1 and IT2 FLCs.

A.5.1 Define and Set Up FLC Inputs

Because the actual inputs to the zFLC are identical to those for the T1 and IT2 FLC
cases, the setup of the zFLC inputs is identical to that of the T1 and IT2 cases.

A.5.2 Define zSlices-Based GT2 FSs That Quantify Each Variable

All zSlices-based GT2 FSs are based on the IT2 FSs from the previous
section. The third dimension for each zSlices-based GT2 FS is formed by
creating four zSlices that are evenly distributed within the FOU of each of
the original IT2 FSs. Consequently, both inputs are modeled using trapezoidal
zSlices-based fuzzy sets as shown in Figs. A.19 and A.20. Additionally,
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private void plotControlSurface(boolean useCentroidDefuzzification, int input1Discs, int input2Discs)
{

{

{

{

output = rulebase.evaluate(1, 100);

z[currentY][currentX] = output;
output = rulebase.evaluate(0,0);

{

}

}

}
}

}

double output;
double[] x = new double[input1Discs];
double[] y = new double[input2Discs];
double[][] z = new double[y.length][x.length];
double incrX, incrY;
incrX = rfs.getDomain().getSize()/(input1Discs-1.0);
incrY = rbs.getDomain().getSize()/(input2Discs-1.0);

//first, get the discretisation values
for(int currentX=0; currentX<input1Discs; currentX++)

for(int currentX=0; currentX<input1Discs; currentX++)

for(int currentY=0; currentY<input2Discs; currentY++)

x[currentX] = currentX * incrX;

for(int currentY=0; currentY<input2Discs; currentY++)

y[currentY] = currentY * incrY;

rfs.setInput(x[currentX]);

if(useCentroidDefuzzification)
rbs.setInput(y[currentY]);

else

//now do the plotting (relies on JMathPlot library: http://code.google.com/p/jmathplot/ (Sep. 2012))
JMathPlotter plotter = new JMathPlotter(17, 17, 14);
plotter.plotControlSurface("Internal Type-2 Control Surface",

plotter.show("Interval Type-2 Fuzzy Logic System Control Surface for Robot Control Example");
new String[]{rfs.getName(), rbs.getName(), “Steering Angle"}, x, y, z, new Tuple(-180,180.0));

Figure A.18 Code to execute the IT2 FLC for the purpose of generating the control surface.

http://code.google.com/p/jmathplot
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Figure A.19 Two views of the same trapezoidal zSlices-based GT2 FSs for Near and Far for the right-front sonar (RFS) (four zLevels).
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Figure A.20 Two views of the same trapezoidal zSlices-based GT2 FSs for Near and Far for the right-back sonar (RBS) (four zLevels).
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Figure A.21 Two views of the same trapezoidal zSlices-based GT2 FSs for Left, Zero, and Right steering angle (four zLevels).
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//Set up the lower and upper membership functions (MFs) making up the

//now spawn a basic zSlices-based set with 4 zLevels

//overall Interval Type-2 Fuzzy Sets for each input and output
T1MF_Trapezoidal rfsNearUMF = new T1MF_Trapezoidal("Upper MF for Near distance of the RFS",new double[]{0.0, 0.0, 150.0, 250.0});
T1MF_Trapezoidal rfsNearLMF = new T1MF_Trapezoidal("Lower MF for Near distance of the RFS",new double[]{0.0, 0.0, 100.0, 200.0});
IntervalT2MF_Trapezoidal rfsNearIT2MF = new IntervalT2MF_Trapezoidal("IT2MF for Near distance of the RFS",rfsNearUMF,rfsNearLMF);

T1MF_Trapezoidal rfsFarUMF = new T1MF_Trapezoidal("Upper MF for Far distance of the RFS",new double[]{100.0, 200.0, 500.0, 500.0});
T1MF_Trapezoidal rfsFarLMF = new T1MF_Trapezoidal("Lower MF for Far distance of the RFS",new double[]{150.0, 250.0, 500.0, 500.0});
IntervalT2MF_Trapezoidal rfsFarIT2MF = new IntervalT2MF_Trapezoidal("IT2MF for Far distance of the RFS",rfsFarUMF,rfsFarLMF);
GenT2zMF_Trapezoidal rfsFarMF = new GenT2zMF_Trapezoidal("zGT2MF for Far distance of the RFS", rfsFarIT2MF, numberOfzLevels);

GenT2zMF_Trapezoidal rfsNearMF = new GenT2zMF_Trapezoidal("zGT2MF for Near distance of the RFS", rfsNearIT2MF, numberOfzLevels);

T1MF_Trapezoidal rbsNearUMF = new T1MF_Trapezoidal("Upper MF for Near distance of the RBS",new double[]{0.0, 0.0, 200.0, 300.0});
T1MF_Trapezoidal rbsNearLMF = new T1MF_Trapezoidal("Lower MF for Near distance of the RBS",new double[]{0.0, 0.0, 150.0, 250.0});
IntervalT2MF_Trapezoidal rbsNearIT2MF = new IntervalT2MF_Trapezoidal("IT2MF for Near distance of the RBS",rbsNearUMF,rbsNearLMF);
GenT2zMF_Trapezoidal rbsNearMF = new GenT2zMF_Trapezoidal("zGT2MF for Near distance of the RBS", rbsNearIT2MF, numberOfzLevels);

T1MF_Trapezoidal rbsFarUMF = new T1MF_Trapezoidal("Upper MF for Far distance of the RBS",new double[]{150.0, 250.0, 500.0, 500.0});
T1MF_Trapezoidal rbsFarLMF = new T1MF_Trapezoidal("Lower MF for Far distance of the RBS",new double[]{200.0, 300.0, 500.0, 500.0});
IntervalT2MF_Trapezoidal rbsFarIT2MF = new IntervalT2MF_Trapezoidal("IT2MF for Far distance of the RBS",rbsFarUMF,rbsFarLMF);
GenT2zMF_Trapezoidal rbsFarMF = new GenT2zMF_Trapezoidal("zGT2MF for Far distance of the RBS", rbsFarIT2MF, numberOfzLevels);

T1MF_Trapezoidal leftUMF = new T1MF_Trapezoidal("Upper MF for Left Steering Angle",new double[]{-120.0, -100.0, -50.0, -30.0});
T1MF_Trapezoidal leftLMF = new T1MF_Trapezoidal("Lower MF for Left Steering Angle",new double[]{-100.0, -75.0, -75.0, -50.0});
IntervalT2MF_Trapezoidal leftIT2MF = new IntervalT2MF_Trapezoidal("IT2MF for Left Steering Angle",leftUMF,leftLMF);
GenT2zMF_Trapezoidal leftMF = new GenT2zMF_Trapezoidal("zGT2MF for Left Steering Angle", leftIT2MF, numberOfzLevels);

T1MF_Trapezoidal zeroUMF = new T1MF_Trapezoidal("Upper MF for Zero Steering Angle",new double[]{-30.0, -10.0, 40.0, 60.0});
T1MF_Trapezoidal zeroLMF = new T1MF_Trapezoidal("Lower MF for Zero Steering Angle",new double[]{-15.0, 15.0, 15.0, 40.0});
IntervalT2MF_Trapezoidal zeroIT2MF = new IntervalT2MF_Trapezoidal("IT2MF for Zero Steering Angle",zeroUMF,zeroLMF);
GenT2zMF_Trapezoidal zeroMF = new GenT2zMF_Trapezoidal("zGT2MF for Zero Steering Angle", zeroIT2MF, numberOfzLevels);

T1MF_Trapezoidal rightUMF = new T1MF_Trapezoidal("Upper MF for Right Steering Angle",new double[]{60.0, 80.0, 130.0, 150.0});
T1MF_Trapezoidal rightLMF = new T1MF_Trapezoidal("Lower MF for Right Steering Angle",new double[]{80.0, 105.0, 105.0, 130.0});
IntervalT2MF_Trapezoidal rightIT2MF = new IntervalT2MF_Trapezoidal("IT2MF for Right Steering Angle",rightUMF,rightLMF);
GenT2zMF_Trapezoidal rightMF = new GenT2zMF_Trapezoidal("zGT2MF for Right Steering Angle", rightIT2MF, numberOfzLevels);

Figure A.22 Definition of zSlices-based GT2 FSs in Juzzy; each zGT2 set is based on an IT2 FS (itself based on an upper and lower T1 FSs) and
is constructed using four zSlices.
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GenT2Z_Antecedent rfsNear = new GenT2z_Antecedent("Near distance of the RFS",rfsNearMF, rfs);
GenT2Z_Antecedent rfsFar = new GenT2z_Antecedent("Far distance of the RFS",rfsFarMF, rfs);

GenT2Z_Antecedent rbsNear = new GenT2z_Antecedent("Near distance of the RBS",rbsNearMF, rbs);
GenT2Z_Antecedent rbsFar = new GenT2z_Antecedent("Far distance of the RBS",rbsFarMF, rbs);

GenT2ZEngine_Defuzzification gT2zED = new GenT2zEngine_Defuzzification(100);
GenT2Z_Consequent left = new GenT2z_Consequent("Left", leftMF, gT2zED);
GenT2Z_Consequent zero = new GenT2z_Consequent("Zero", zeroMF, gT2zED);
GenT2Z_Consequent right = new GenT2z_Consequent("Right", rightMF, gT2zED);

Figure A.23 Antecedent and consequent definitions for the zSlices-based GT2 FLC in Juzzy.
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rulebase = new GenT2z_Rulebase(4);
rulebase.addRule(new GenT2z_Rule(new GenT2z_Antecedent[]{rfsNear, rbsNear}, left));
rulebase.addRule(new GenT2z_Rule(new GenT2z_Antecedent[]{rfsNear, rbsFar}, left));
rulebase.addRule(new GenT2z_Rule(new GenT2z_Antecedent[]{rfsFar, rbsNear}, zero));
rulebase.addRule(new GenT2z_Rule(new GenT2z_Antecedent[]{rfsFar, rbsFar}, right));

Figure A.24 Creation of zSlices-based GT2 rule base in Juzzy.
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the steering output is modeled using the three trapezoidal zSlices-based GT2 FSs
shown in Fig. A.21. Each of these figures includes both a rear/side view as well
as a front view of the respective sets so as to facilitate their visualization. Note,
also, that in all zSlices-based set figures, the right-hand figure indicates the upper
and lower membership functions of each zSlice for the Near and Far sets, similar
to the common representation of IT2 FSs. The left-hand figure provides a 3D view
in which each zSlice is shown in a different shade of gray. In reality, each zSlice
“protrudes” from its zLevel to z = 0 but is only shown from its zLevel to the next
zLevel below it to facilitate visualization (e.g., z2 is shown to protrude from z = z2
to z = z1).

The process of creating the zSlices-based GT2 FSs is illustrated by the source
code depicted in Fig. A.22, obtained from the Juzzy package.

Note, as stated earlier, that it is a requirement for all zSlices-based GT2 FSs in
a given GT2 FLC to have the same number of zLevels because this enables the
computation of each zLevel in isolation (and a later recombination of the results).

A.5.3 Define Logical Antecedents and Consequents for the FL Rules

As in the IT2 case, after all FSs have been defined, all of them are associated with
antecedents and consequents, in preparation for the construction of FL rules.

Figure A.23 shows the construction of the respective antecedents and conse-
quents in Juzzy for the GT2 FLC.

A.5.4 Define Rule Base of the GT2 FLC

Because the antecedents and consequents are the same as in the IT2 case, the
example four-rule rule base of the zFLC is identical to that of the IT2 FLC (only
the underlying FSs differ). The code for the construction (in Juzzy) of the rule base
for the zFLC is provided in Fig. A.24.

0.0 0.0 50.0 100.0 150.0 200.0 250.0 300.0 350.0 400.0 450.0 500.050.0
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Figure A.25 Control surface for zSlices-based GT2 FLC.
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private void plotControlSurfaceMC(int input1Discs, int input2Discs)
{

{

{

{

output = factory.runFactory();

z[currentY][currentX] = output;

{

}

}

}
}

}

double output;
double[] x = new double[input1Discs];
double[] y = new double[input2Discs];

double[][] z = new double[y.length][x.length];
double incrX, incrY;
incrX = rfs.getDomain().getSize()/(input1Discs-1.0);
incrY = rbs.getDomain().getSize()/(input2Discs-1.0);

//first, get the values
for(int currentX=0; currentX<input1Discs; currentX++)

for(int currentX=0; currentX<input1Discs; currentX++)

for(int currentY=0; currentY<input2Discs; currentY++)

x[currentX] = currentX * incrX;

for(int currentY=0; currentY<input2Discs; currentY++)

y[currentY] = currentY * incrY;

rfs.setInput(x[currentX]); //set the front sonar input

rbs.setInput(y[currentY]); //set the back sonar input

//now do the plotting (relies on JMathPlot library: http://code.google.com/p/jmathplot/ (Sep. 2012))
JMathPlotter plotter = new JMathPlotter();
plotter.plotControlSurface("Control Surface",

plotter.show("zSlices based General Type-2 Fuzzy Logic System Control Surface for Tipping Example");
new String[]{rfs.getName(), rbs.getName(), “Steering Output"}, x, y, z, new Tuple(-180.0, 180.0));

Figure A.26 Code to execute the FLC with the purpose of generating the control surface.

http://code.google.com/p/jmathplot
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After specifying the rule base, the zFLC is ready for execution. During execu-
tion, each zLevel (i.e., four in our case) is computed in parallel (subject to computa-
tional resources) and the output of each individual zLevel is recombined to produce
the overall result, as explained in Chapter 7. The control surface for the zFLC is
shown in Fig. A.25. The method employed using the Juzzy framework to create the
control surface is included in Fig. A.26.

Similar to Section A.4.4, direct comparisons of theT1 FLC, IT2 FLC, and zFLC,
in terms of absolute performance, are not provided here because they are highly
dependent on the robot, its settings, and the like.

Comparing the zFLC control surface (Fig. A.25) with that of the IT2 FLC control
surface (Fig. A.17) highlights the impact of the underlying zSlices-based GT2 FSs.
Observe that the control surface of the zFLC is smoother overall than that of the
IT2 FLC, so its control output will change less drastically than that of the IT2 FLC
as its input measurements change.
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